Solveeit Logo

Question

Question: Find the derivative of the following function: \({x^4}\left( {5\sin x - 3\cos x} \right)\)...

Find the derivative of the following function:
x4(5sinx3cosx){x^4}\left( {5\sin x - 3\cos x} \right)

Explanation

Solution

Hint: In this question apply the product rule of differentiation which is given as ddx(uv)=uddxv+vddxu\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}v + v\dfrac{d}{{dx}}u later on in the solution apply the differentiation property of sin x, cos x and xn{x^n} which is given as ddx(sinx)=cosx and ddx(cosx)=sinx and ddxxn=nxn1\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x{\text{ and }}\dfrac{d}{{dx}}\left( {\cos x} \right) = -\sin x{\text{ and }}\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} so use these concepts to reach the solution of the question.

Complete step-by-step answer:
Let
y=x4(5sinx3cosx)y = {x^4}\left( {5\sin x - 3\cos x} \right)
Now differentiate it w.r.t. x we have,
ddxy=ddx[x4(5sinx3cosx)]\Rightarrow \dfrac{d}{{dx}}y = \dfrac{d}{{dx}}\left[ {{x^4}\left( {5\sin x - 3\cos x} \right)} \right]
Now here we use product rule of differentiate which is given as
ddx(uv)=uddxv+vddxu\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}v + v\dfrac{d}{{dx}}u so use this property in above equation we have,
ddxy=x4ddx(5sinx3cosx)+(5sinx3cosx)ddxx4\Rightarrow \dfrac{d}{{dx}}y = {x^4}\dfrac{d}{{dx}}\left( {5\sin x - 3\cos x} \right) + \left( {5\sin x - 3\cos x} \right)\dfrac{d}{{dx}}{x^4}
Now as we know that differentiation of ddx(sinx)=cosx and ddx(cosx)=sinx and ddxxn=nxn1\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x{\text{ and }}\dfrac{d}{{dx}}\left( {\cos x} \right) = -\sin x{\text{ and }}\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} so use this property in above equation we have,
ddxy=x4(5cosx+3sinx)+(5sinx3cosx)4x3\Rightarrow \dfrac{d}{{dx}}y = {x^4}\left( {5\cos x + 3\sin x} \right) + \left( {5\sin x - 3\cos x} \right)4{x^3}
Now simplify this equation we have,
ddxy=5x4cosx+3x4sinx+20x3sinx12x3cosx\Rightarrow \dfrac{d}{{dx}}y = 5{x^4}\cos x + 3{x^4}\sin x + 20{x^3}\sin x - 12{x^3}\cos x
ddxy=x3cosx(5x12)+x3sinx(3x+20)\Rightarrow \dfrac{d}{{dx}}y = {x^3}\cos x\left( {5x - 12} \right) + {x^3}\sin x\left( {3x + 20} \right)
So this is the required differentiation.

Note – Whenever we face such types of questions the key concept is always recall the formula of product rule of differentiation, formula of sin x, cos x and xn{x^n} differentiation which is stated above then first apply the product rule as above then use the property of differentiation of sin x, cos x and xn{x^n} as above and simplify we will get the required answer.