Solveeit Logo

Question

Question: Find the derivative of the following function. \[y=\sqrt[3]{\dfrac{x\left( {{x}^{2}}+1 \right)}{{{...

Find the derivative of the following function.
y=x(x2+1)(x21)23y=\sqrt[3]{\dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}}}

Explanation

Solution

Hint: We use the product rule to define the differentiation of products of two or more than two functions and Quotient rule to define the differentiation of two functions as ddx(uv)=vuuvv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}.

Complete step-by-step solution -
We are given the function y=x(x2+1)(x21)23y=\sqrt[3]{\dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}}}.
To make the problem a little easier to solve , we will cube both sides of the function .
On cubing both sides of the function , we get
y3=x(x2+1)(x21)2{{y}^{3}}=\dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}}
Now, we can see that the RHS of the function is of f(x).g(x)h(x)\dfrac{f(x).g(x)}{h(x)} type where f(x)=x,g(x)=x2+1f(x)=x,g(x)={{x}^{2}}+1 and h(x)=(x1)2h(x)={{(x-1)}^{2}} .
Now , the first thing we will do is to find the derivative of the numerator. It will be helpful in applying quotient rules of differentiation while differentiating the function . To find the derivative of the numerator, we need to apply the product rule of differentiation .
The product rule of differentiation is given by ddx(f(x).g(x))=f(x).g(x)+g(x).f(x)\dfrac{d}{dx}\left( f(x).g(x) \right)={{f}^{'}}(x).g(x)+{{g}^{'}}(x).f(x)
So, on differentiating the numerator with respect to xx by applying product rule of differentiation , we get
ddx(x(x2+1))=1.(x2+1)+x.2x\dfrac{d}{dx}\left( x\left( {{x}^{2}}+1 \right) \right)=1.\left( {{x}^{2}}+1 \right)+x.2x
=x2+1+2x2={{x}^{2}}+1+2{{x}^{2}}
=3x2+1=3{{x}^{2}}+1
Now, we will differentiate the entire function y3=x(x2+1)(x21)2{{y}^{3}}=\dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}} .
To differentiate the function , we need to apply the quotient rule of differentiation, the quotient rule of differentiation is given by ddx(uv)=vuuvv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}.
So ,on differentiating the function by applying quotient rule of differentiation , we get
ddx(y3)=ddx(x(x2+1)(x21)2)\dfrac{d}{dx}\left( {{y}^{3}} \right)=\dfrac{d}{dx}\left( \dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}} \right)
3y2dydx=(x21)2.ddx(x(x2+1))x(x2+1).ddx((x21)2)((x21)2)2\Rightarrow 3{{y}^{2}}\dfrac{dy}{dx}=\dfrac{{{\left( {{x}^{2}}-1 \right)}^{2}}.\dfrac{d}{dx}\left( x\left( {{x}^{2}}+1 \right) \right)-x\left( {{x}^{2}}+1 \right).\dfrac{d}{dx}\left( {{\left( {{x}^{2}}-1 \right)}^{2}} \right)}{{{\left( {{\left( {{x}^{2}}-1 \right)}^{2}} \right)}^{2}}}
3y2dydx=(x21)2.(3x2+1)(x3+x)(2(x21).2x)(x21)4\Rightarrow 3{{y}^{2}}\dfrac{dy}{dx}=\dfrac{{{\left( {{x}^{2}}-1 \right)}^{2}}.\left( 3{{x}^{2}}+1 \right)-\left( {{x}^{3}}+x \right)\left( 2\left( {{x}^{2}}-1 \right).2x \right)}{{{\left( {{x}^{2}}-1 \right)}^{4}}}
Now , we will take x21{{x}^{2}}-1 common from the numerator.
Taking x21{{x}^{2}}-1 common from numerator , we get
3y2dydx=(x21)(x21)4[(x21).(3x2+1)(x3+x)(4x)]3{{y}^{2}}\dfrac{dy}{dx}=\dfrac{\left( {{x}^{2}}-1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{4}}}\left[ \left( {{x}^{2}}-1 \right).\left( 3{{x}^{2}}+1 \right)-\left( {{x}^{3}}+x \right)\left( 4x \right) \right]
3y2dydx=1(x21)3[3x4+x23x214x44x2]\Rightarrow 3{{y}^{2}}\dfrac{dy}{dx}=\dfrac{1}{{{\left( {{x}^{2}}-1 \right)}^{3}}}\left[ 3{{x}^{4}}+{{x}^{2}}-3{{x}^{2}}-1-4{{x}^{4}}-4{{x}^{2}} \right]
3y2dydx=1(x21)3[x46x21]\Rightarrow 3{{y}^{2}}\dfrac{dy}{dx}=\dfrac{1}{{{\left( {{x}^{2}}-1 \right)}^{3}}}\left[ -{{x}^{4}}-6{{x}^{2}}-1 \right]
dydx=13y2(x21)3[x46x21]\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{3{{y}^{2}}{{\left( {{x}^{2}}-1 \right)}^{3}}}\left[ -{{x}^{4}}-6{{x}^{2}}-1 \right] -----(i)(i)
In the question, it is given
y=x(x2+1)(x21)23y=\sqrt[3]{\dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}}}
So , y2=(x(x2+1)(x21)2)23{{y}^{2}}={{\left( \dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}} \right)}^{\dfrac{2}{3}}}
Or , 1y2=((x21)2x(x2+1))23\dfrac{1}{{{y}^{2}}}={{\left( \dfrac{{{\left( {{x}^{2}}-1 \right)}^{2}}}{x\left( {{x}^{2}}+1 \right)} \right)}^{\dfrac{2}{3}}}
Substituting this value in equation(i)(i) we get ,
dydx=((x21)2x(x2+1))23.13(x21)3[x46x21]\dfrac{dy}{dx}={{\left( \dfrac{{{\left( {{x}^{2}}-1 \right)}^{2}}}{x\left( {{x}^{2}}+1 \right)} \right)}^{\dfrac{2}{3}}}.\dfrac{1}{3{{\left( {{x}^{2}}-1 \right)}^{3}}}\left[ -{{x}^{4}}-6{{x}^{2}}-1 \right]
Hence , the derivative of the given function y=x(x2+1)(x21)23y=\sqrt[3]{\dfrac{x\left( {{x}^{2}}+1 \right)}{{{\left( {{x}^{2}}-1 \right)}^{2}}}}is given as dydx=((x21)2x(x2+1))23.13(x21)3[x46x21]\dfrac{dy}{dx}={{\left( \dfrac{{{\left( {{x}^{2}}-1 \right)}^{2}}}{x\left( {{x}^{2}}+1 \right)} \right)}^{\dfrac{2}{3}}}.\dfrac{1}{3{{\left( {{x}^{2}}-1 \right)}^{3}}}\left[ -{{x}^{4}}-6{{x}^{2}}-1 \right]

Note: (x21)2{{\left( {{x}^{2}}-1 \right)}^{2}}is a composite function. So , it is of the form h(x)=p(q(x))h(x)=p(q(x)). To find its derivative, h(x)=p(q(x)×q(x)h'(x)=p'(q(x)\times q'(x) . So , the derivative of (x21)2{{\left( {{x}^{2}}-1 \right)}^{2}} will be 2(x21).2x2\left( {{x}^{2}}-1 \right).2x and not 2(x21)2\left( {{x}^{2}}-1 \right).
Students make such mistakes and end up getting a wrong answer. Such mistakes should be avoided .