Question
Question: Find the derivative of \[\tan x\] using the first derivative principle of derivatives....
Find the derivative of tanx using the first derivative principle of derivatives.
Solution
For this question, we will directly use the formula of first derivative principle to find the derivative. The formula is given below as: f′(x)=h→0limhf(x+h)−f(x). So, use this concept to reach the solution of the given problem.
Complete step by step answer:
We have to find out the derivative of tanx. So, our function will be f(x)=tanx.
According to the first derivative principle, we have
Taking LCM and simplifying further, we have
⇒f′(x)=h→0limhcosxcos(x+h)sin(x+h)cosx−cos(x+h)sinx
By using the formula, sinAcosB−cosAsinB=sin(A−B), we have
Splitting the limits, we have
⇒f′(x)=h→0limhsin(h)×h→0limcosxcos(x+h)1
By using the formula, x→0limxsinx=1, we have
⇒f′(x)=h→0limcosxcos(x+h)1
We know that for h→0 we have cos(x+h)≃cosx
Thus, the derivative of tanx using the first derivative principle is sec2x.
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.