Question
Question: Find the derivative of \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]with respect to...
Find the derivative of tan−1(1−x2x)with respect to sin−1(3x−4x3)is
A.1−x21
B.1−x23
C.3
D.31
Solution
Hint: Firstly we have to get thought that we have to replace by sinθ and then we have to proceed. We must know the basic trigonometric functions that is tanθ=cosθsinθand sin3θ=3sinθ−4sin3θ and the concept of inverse function that is if x=sinθ then θ=sin−1x
Complete step-by-step answer:
Let us now take tan−1(1−x2x). . . . . . . . . . . . . . . . . . . . . . . .. . .(1)
Replace the value of x by sinθ, then we will get
x=sinθ in equation (1)
=tan−1(1−sin2θsinθ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
=tan−1(cos2θsinθ). . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .(3)
=tan−1(tanθ)
=θ
We have assumed that x=sinθ
So θ=sin−1x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Let us now take sin−1(3x−4x3). . . . . . . . . . . . . . . . . . . . . . . .(5)
Replace the value of x by sinθ, then we will get
x=sinθ in equation (5)
=sin−1(3sinθ−4sin3θ). . . . . . . . . . . . . . . . . . . . . . . . . .(6)
=sin−1(sin3θ). . . . . . . . . . . . . . . . . . .. .. .. .. .. . .(7)
=3θ
We have assumed that x=sinθ
So θ=sin−1x
=3sin−1x. . . . . . . . . . . . . . .. . . . . . .(8)
So we have to find the derivative of sin−1xwith respect to 3sin−1x
dxd(sin−1x)=1−x21
dxd(3sin−1x)=1−x23
So, the ratio of derivative sin−1x with respect to 3sin−1xis 31
So the correct option is option (D)
Note:The derivative of sin−1x is given by dxd(sin−1x)=1−x21. This problem is solved using trigonometric functions. If we did not get the thought that we have to use trigonometric function the we can proceed using derivative formulas of sin−1x and tan−1x,but if we does not use trigonometric functions to do the sum the answer process is very big. So better to use trigonometric functions