Solveeit Logo

Question

Question: Find the derivative of \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]with respect to...

Find the derivative of tan1(x1x2){{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)with respect to sin1(3x4x3){{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)is
A.11x2\dfrac{1}{\sqrt{1-{{x}^{2}}}}
B.31x2\dfrac{3}{\sqrt{1-{{x}^{2}}}}
C.33
D.13\dfrac{1}{3}

Explanation

Solution

Hint: Firstly we have to get thought that we have to replace by sinθ\sin \theta and then we have to proceed. We must know the basic trigonometric functions that is tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }and sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta and the concept of inverse function that is if x=sinθx=\sin \theta then θ=sin1x\theta ={{\sin }^{-1}}x

Complete step-by-step answer:
Let us now take tan1(x1x2){{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right). . . . . . . . . . . . . . . . . . . . . . . .. . .(1)
Replace the value of x by sinθ\sin \theta , then we will get
x=sinθx=\sin \theta in equation (1)
=tan1(sinθ1sin2θ)={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
=tan1(sinθcos2θ)={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{{{\cos }^{2}}\theta }} \right). . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .(3)
=tan1(tanθ)={{\tan }^{-1}}\left( \tan \theta \right)
=θ=\theta
We have assumed that x=sinθx=\sin \theta
So θ=sin1x\theta ={{\sin }^{-1}}x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Let us now take sin1(3x4x3){{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right). . . . . . . . . . . . . . . . . . . . . . . .(5)
Replace the value of x by sinθ\sin \theta , then we will get
x=sinθx=\sin \theta in equation (5)
=sin1(3sinθ4sin3θ)={{\sin }^{-1}}\left( 3\sin \theta -4{{\sin }^{3}}\theta \right). . . . . . . . . . . . . . . . . . . . . . . . . .(6)
=sin1(sin3θ)={{\sin }^{-1}}\left( \sin 3\theta \right). . . . . . . . . . . . . . . . . . .. .. .. .. .. . .(7)
=3θ=3\theta
We have assumed that x=sinθx=\sin \theta
So θ=sin1x\theta ={{\sin }^{-1}}x
=3sin1x=3{{\sin }^{-1}}x. . . . . . . . . . . . . . .. . . . . . .(8)
So we have to find the derivative of sin1x{{\sin }^{-1}}xwith respect to 3sin1x3{{\sin }^{-1}}x
ddx(sin1x)=11x2\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}
ddx(3sin1x)=31x2\dfrac{d}{dx}\left( 3{{\sin }^{-1}}x \right)=\dfrac{3}{\sqrt{1-{{x}^{2}}}}
So, the ratio of derivative sin1x{{\sin }^{-1}}x with respect to 3sin1x3{{\sin }^{-1}}xis 13\dfrac{1}{3}
So the correct option is option (D)
Note:The derivative of sin1x{{\sin }^{-1}}x is given by ddx(sin1x)=11x2\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}. This problem is solved using trigonometric functions. If we did not get the thought that we have to use trigonometric function the we can proceed using derivative formulas of sin1x{{\sin }^{-1}}x and tan1x{{\tan }^{-1}}x,but if we does not use trigonometric functions to do the sum the answer process is very big. So better to use trigonometric functions