Solveeit Logo

Question

Question: Find the derivative of \(\sin \left( {x + 1} \right)\) with respect to \(x\) from first principles....

Find the derivative of sin(x+1)\sin \left( {x + 1} \right) with respect to xx from first principles.

Explanation

Solution

Using the first principle, we can write dydx=limh0f(x+h)f(x)h\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}. We will use this information to find the derivative of the required function. Also we will use trigonometric results.

Complete step-by-step answer:
In this problem, we have to find the derivative of sin(x+1)\sin \left( {x + 1} \right) by using first principle. For this, let us consider y=sin(x+1)y = \sin \left( {x + 1} \right) or f(x)=sin(x+1)f\left( x \right) = \sin \left( {x + 1} \right). Let us replace xx by x+hx + h. Therefore, we get f(x+h)=sin(x+h+1)f\left( {x + h} \right) = \sin \left( {x + h + 1} \right).
Using the first principle, we can write dydx=limh0f(x+h)f(x)h(1)\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right). Now we will substitute f(x+h)f\left( {x + h} \right) and f(x)f\left( x \right) in equation (1)\left( 1 \right) and evaluate the limit. Therefore, we get
dydx=limh0f(x+h)f(x)h dydx=limh0sin(x+h+1)sin(x+1)h(2)  \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\\
Now on the RHS of equation (2)\left( 2 \right), we will use the trigonometric identity which is given by
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right). Therefore, we get
dydx=limh02cos[(x+h+1)+(x+1)2]sin[(x+h+1)(x+1)2]h dydx=limh02cos(2x+h+22)sin(h2)h dydx=limh0[cos(2x+h+22)sin(h2)h2](3)  \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\\
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation (3)\left( 3 \right), we will get
dydx=[limh0cos(2x+h+22)][limh0sin(h2)h2](4)\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)
Now we are going to use the result limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 on RHS of equation (4)\left( 4 \right). Therefore, we get
dydx=[limh0cos(2x+h+22)](1)[h0h20] dydx=limh0cos(2x+h+22)(5)  \dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\\
Let us put h=0h = 0 on the RHS of equation (5)\left( 5 \right) to find the limit. Therefore, we get
dydx=cos(2x+0+22) dydx=cos[2(x+1)2] dydx=cos(x+1)  \dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\\
Therefore, the derivative of sin(x+1)\sin \left( {x + 1} \right) with respect to xx is cos(x+1)\cos \left( {x + 1} \right).

Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of sin(x+1)\sin \left( {x + 1} \right) by using the basic formula of derivative and chain rule.