Solveeit Logo

Question

Question: Find the derivative of \({\sin ^2}x\) using the first principles?...

Find the derivative of sin2x{\sin ^2}x using the first principles?

Explanation

Solution

We have to find the derivative of sin2x{\sin ^2}x using first principle. First principle is that if there is a function f(x)f\left( x \right) then the derivative of f(x)f\left( x \right) will be
f(x)=limh0f(x+h)f(x)h\to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}
We have explained this principle in detail below.

Complete step-by-step answer:
In this question, we need to find the derivative of sin2x{\sin ^2}x using the first principles.
Now, we could easily differentiate sin2x{\sin ^2}x using the usual differentiation method, but we are going to see the long method, that is the first principle in this question.
Now, first of all let us understand what first principle is.
Let f(x)f\left( x \right) be a function in its domain. A function defined such that if limx0[f(x+h)f(x)h]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}} \right] exists, it is said to be the derivative of f(x)f\left( x \right). This is known as the first principle of derivative and it is also known as the Delta Method.
Now, here our f(x)f\left( x \right) is sin2x{\sin ^2}x.
f(x)=sin2x\to f\left( x \right) = {\sin ^2}x
And the derivative of f(x)f\left( x \right) will be equal to
f(x)=limh0f(x+h)f(x)h\to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}
f(x)=limh0sin2(x+h)sin2xh\to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}\left( {x + h} \right) - {{\sin }^2}x}}{h}
Now, we know that sin(x+h)=sinxcosh+cosxsinh\sin \left( {x + h} \right) = \sin x\cosh + \cos x\sinh . Therefore,
f(x)=limh0(sinxcosh+cosxsinh)2sin2xh\to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {\sin x\cosh + \cos x\sinh } \right)}^2} - {{\sin }^2}x}}{h}
Now, using the formula (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}, we get

f(x)=limh0sin2xcos2h+cos2xsin2h+2sinxcoshsinhcosxsin2xh f(x)=limh0sin2x(cos2h1)+2sinxcoshsinhcosx+cos2xsin2hh  \to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}x{{\cos }^2}h + {{\cos }^2}x{{\sin }^2}h + 2\sin x\cosh \sinh \cos x - {{\sin }^2}x}}{h} \\\ \to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}x\left( {{{\cos }^2}h - 1} \right) + 2\sin x\cosh \sinh \cos x + {{\cos }^2}x{{\sin }^2}h}}{h} \\\

Now, e know the identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1. Therefore, cos2h1=sin2h{\cos ^2}h - 1 = - {\sin ^2}h. Therefore, substituting it in above equation, we get

f(x)=limh0sin2xsin2h+2sinxcoshsinhcosx+cos2xsin2hh f(x)=limh0sin2h(cos2xsin2x)+2sinxcoshsinhcosxh f(x)=limh0[sinhhsinh(cos2xsin2x)+2sinxcoshcosxsinhh]  \to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - {{\sin }^2}x{{\sin }^2}h + 2\sin x\cosh \sinh \cos x + {{\cos }^2}x{{\sin }^2}h}}{h} \\\ \to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}h\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + 2\sin x\cosh \sinh \cos x}}{h} \\\ \to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sinh }}{h} \cdot \sinh \left( {{{\cos }^2}x - {{\sin }^2}x} \right) + 2\sin x\cosh \cos x \cdot \dfrac{{\sinh }}{h}} \right] \\\

Now, using the fundamental trigonometric calculus limits,
limθ0sinθθ=1\to \mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1
Therefore, we get
f(x)=limh0[(1)sinh(cos2xsin2x)+2sinxcoshcosx(1)]\to f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \left[ {\left( 1 \right) \cdot \sinh \left( {{{\cos }^2}x - {{\sin }^2}x} \right) + 2\sin x\cosh \cos x \cdot \left( 1 \right)} \right]
Now, put the value of h, we get

f(x)=[(1)sin0(cos2xsin2x)+2sinxcos0cosx(1)] f(x)=[(1)(0)(cos2xsin2x)+2sinx(1)cosx(1)] f(x)=[0+2sinxcosx] f(x)=2sinxcosx  \to f'\left( x \right) = \left[ {\left( 1 \right) \cdot \sin 0\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + 2\sin x\cos 0\cos x \cdot \left( 1 \right)} \right] \\\ \to f'\left( x \right) = \left[ {\left( 1 \right) \cdot \left( 0 \right)\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + 2\sin x\left( 1 \right)\cos x\left( 1 \right)} \right] \\\ \to f'\left( x \right) = \left[ {0 + 2\sin x\cos x} \right] \\\ \to f'\left( x \right) = 2\sin x\cos x \\\

Hence, we have calculated the derivative of sin2x{\sin ^2}x using first principle.

Note: We can also find the derivative of sin2x{\sin ^2}x normally using the chain rule.
f(x)=sin2x\to f\left( x \right) = {\sin ^2}x
Here, we have to differentiate both sinx\sin x and its power.
f(x)=2sinxcosx\to f'\left( x \right) = 2\sin x\cos x