Solveeit Logo

Question

Question: Find the derivative of \(\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right)\) with res...

Find the derivative of (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) with respect to xx

Explanation

Solution

n the given problem, we are required to differentiate (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) with respect to x. Since, (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) is a composite function, so we will have to apply chain rule of differentiation in the process of differentiating (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) . So, differentiation of (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) with respect to x will be done layer by layer using the chain rule of differentiation. Also the derivative of ln(x)\ln \left( x \right) with respect to xx must be remembered.

Complete step by step answer:
To find derivative of (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) with respect to xx, we have to find differentiate (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right)with respect to xx. So, Derivative of (ln(ln(lnx)))\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) with respect to xx can be calculated as ddx(ln(ln(lnx)))\dfrac{d}{{dx}}\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right) .
Now, ddx(ln(ln(lnx)))\dfrac{d}{{dx}}\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right)
Now, Let us assume u=ln(ln(x))u = \ln \left( {\ln \left( x \right)} \right). So substituting ln(ln(x))\ln \left( {\ln \left( x \right)} \right) as uu, we get,
= $$$\dfrac{d}{{dx}}\left( {\ln \left( u \right)} \right)$$ Now, we know that derivative of $$\left( {\ln \left( u \right)} \right)$$ with respect to u is\left( {\dfrac{1}{u}} \right),weget,, we get, = \dfrac{1}{u}\dfrac{{du}}{{dx}}Now,puttingback Now, putting backuasas\left[ {\ln \left( {\ln \left( x \right)} \right)} \right],weget,, we get, = \dfrac{1}{{\left( {\ln \left( {\ln x} \right)} \right)}}\dfrac{{d\left[ {\ln \left( {\ln \left( x \right)} \right)} \right]}}{{dx}}because $$\dfrac{{du}}{{dx}} = \dfrac{{d\left[ {\ln \left( {\ln \left( x \right)} \right)} \right]}}{{dx}}$$ Again, let us assumet = \ln \left( x \right),weget,, we get, = \dfrac{1}{{\left( {\ln \left( {\ln x} \right)} \right)}}\dfrac{{d\left[ {\ln \left( t \right)} \right]}}{{dx}} We know that derivative of $$\left( {\ln \left( t \right)} \right)$$ with respect to t is\left( {\dfrac{1}{t}} \right),soweget,, so we get, = \dfrac{1}{{\left( {\ln \left( {\ln x} \right)} \right)}}\left( {\dfrac{1}{t}} \right)\dfrac{{dt}}{{dx}}Now,puttingback Now, putting backuasas\ln \left( x \right),weget,, we get, = \dfrac{1}{{\left( {\ln \left( {\ln x} \right)} \right)}}\left( {\dfrac{1}{{\ln \left( x \right)}}} \right)\dfrac{{d\left( {\ln \left( x \right)} \right)}}{{dx}}Now,wecandifferentiate Now, we can differentiate\ln \left( x \right)directlywithrespecttox.directly with respect to x. = \dfrac{1}{{\left( {\ln \left( {\ln x} \right)} \right)}}\left( {\dfrac{1}{{\ln \left( x \right)}}} \right)\left( {\dfrac{1}{x}} \right) = \dfrac{1}{{x\ln \left( x \right)\ln \left( {\ln \left( x \right)} \right)}}So,thederivativeof **So, the derivative of\left( {\ln \left( {\ln \left( {\ln x} \right)} \right)} \right)withrespecttowith respect toxisis\left[ {\dfrac{1}{{x\ln \left( x \right)\ln \left( {\ln \left( x \right)} \right)}}} \right]$ .**

Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.