Solveeit Logo

Question

Question: Find the derivative of \({{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}\)...

Find the derivative of (3x+5)4×x21{{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}

Explanation

Solution

We solve this question by dividing the given function into two parts f(x)=(3x+5)4f\left( x \right)={{\left( 3x+5 \right)}^{4}} and g(x)=x21g\left( x \right)=\sqrt{{{x}^{2}}-1}. Then we use the formula for product rule to find the derivative of given function, ddx(f(x)g(x))=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right). Then we find the derivatives of both functions using the formula for differentiation ddx(xn)=n×xn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}} and the formula for chain rule, ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right). Then after finding those derivatives we substitute them in the formula for product rule to find the required derivative.

Complete step by step answer:
Let us assume that f(x)=(3x+5)4f\left( x \right)={{\left( 3x+5 \right)}^{4}} and g(x)=x21g\left( x \right)=\sqrt{{{x}^{2}}-1}.
So, we can write our given function as f(x)g(x)f\left( x \right)g\left( x \right).
So, we need to find the derivative of f(x)g(x)f\left( x \right)g\left( x \right).
Now let us consider the product rule in differentiation.
ddx(f(x)g(x))=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)
So, let us find the values of f(x){f}'\left( x \right) and g(x){g}'\left( x \right).
First let us consider the function f(x)=(3x+5)4f\left( x \right)={{\left( 3x+5 \right)}^{4}}.
f(x)=ddx(3x+5)4\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}
Now let us consider the formula for differentiation of xn{{x}^{n}},
ddx(xn)=n×xn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}
Let us also consider the formula for chain rule,
ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)
Using these formulas, we can write f(x){f}'\left( x \right) as
f(x)=4×(3x+5)41×(ddx(3x+5)) f(x)=4×(3x+5)3×(3) f(x)=12(3x+5)3 \begin{aligned} & \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\\ & \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\\ & \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\\ \end{aligned}
Now let us consider the function g(x)=x21g\left( x \right)=\sqrt{{{x}^{2}}-1}.
Now let us consider the formula for differentiation of xn{{x}^{n}},
ddx(xn)=n×xn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}
Let us also consider the formula for chain rule,
ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)
Using these formulas, we can write g(x){g}'\left( x \right) as
g(x)=ddx(x21) g(x)=12(x21)121×ddx(x21) g(x)=121x21×(2x) g(x)=xx21 \begin{aligned} & \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\\ & \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\\ & \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\\ & \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\\ \end{aligned}
Substituting these values of functions in the product rule we get,
ddx(f(x)g(x))=f(x)g(x)+f(x)g(x) ddx(f(x)g(x))=12(3x+5)3x21+(3x+5)4xx21 \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\\ \end{aligned}
Solving it by taking (3x+5)3{{\left( 3x+5 \right)}^{3}} common we get,
ddx(f(x)g(x))=(3x+5)3(12x21+(3x+5)xx21) ddx(f(x)g(x))=(3x+5)3(12x212+3x2+5xx21) ddx(f(x)g(x))=(3x+5)3(15x2+5x12x21) \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\\ \end{aligned}
Hence, we get the derivative of (3x+5)4×x21{{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1} is (3x+5)3(15x2+5x12x21){{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right).
Hence, answer is (3x+5)3(15x2+5x12x21){{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right).

Note:
The common mistake made while solving this problem is one might take the formula for product rule as ddx(f(x)g(x))=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right), which is wrong because the actual formula for product rule is ddx(f(x)g(x))=f(x)g(x)+f(x)g(x)\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right). One might also confuse the formula ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right) with the formula for product rule. So, one must carefully observe the formulae they are using.