Question
Mathematics Question on Derivatives
Find the derivative of
(i) 2x - 43
(ii)(5x3+3x-1)(x-1)
(iii) x-3(5+3x) (iv)x5(3-6x-9)
(v) x-4(3-4x-5) (vi)x+12−3x−1x2
(i) Let f(x)=2x-43
f'(x)=dxd (2x-43)
=2dxd(x) -dxd(43)
=2-0
=2
(ii) Let f (x)=(5x3+3x-1) (x - 1)
By Leibnitz product rule,
ƒ'(x)=(5x3 +3x−1) = dxd(x −1)+(x−1) = (5x3 +3x−1)
=(5x3+3x-1)(1)+(x-1)(5.3x2+3-0)
=(5x3+3x-1)+(x-1) (15x2+3)
=5x3+3x-1+15x3+3x-15x2-3
=20x3-15x2+6x-4
(iii) Let f(x) = x-3 (5+3x)
By Leibnitz product rule,
ƒ′(x) = x-3dxd(5+3x)+(5+3x)dxd (x-3)
= x-3 (0+3)+(5+3x)(−3x-3-1)
=x-3(3)+(5+3x)(-3x-4)
=3x-3-15x-4-9x-3
=-6x-3-15x-4
=x−3x−3(2x+5)
=−x43(5+2x)
(iv) Let f (x) = x5(3-6x-9)
By Leibnitz product rule,
ƒ′(x) = x5-(3–6x-9)+(3–6x-9) dxd(x5)
=x5 {0-6(-9)x-9-1}+(3–6x-9) (5x4)
= x5(54x-10)+15x4-30x-5
=54x-5+15x4-30x-5
= 24x-5+15x4
=x515x4+24
(v) Let f (x) = x4(3-4x-5)
By Leibnitz product rule,
ƒ'(x) = x-4 dxd(3-4x-5)+(3-4x-5)dxd(x-4)
= x-4{0-4(-5) x-5-1}+(3-4x-5)(-4)x-4-1
x-4(20x-6)+(3-4x-5)(-4x-5)
=20x-10-12x-5+16x-10
=36x-10-12x-5
=−x512 + x1036
(vi) Let f (x) =x+12−3x−1x2
f '(x) =dxd(x+12) - dxd(3x−1x2)
By the quotient rule,
f'(x)=[(x+1)dxd(2)-2dxd(x+1) /(x+1)2]-[(3x-1)dxd(x2)-x2dxd(3x-1)]
=[(x+1)2(x+1)(0)−2(1)]-[(3x−1)2(3x−1)(2x)−(x2)(3)]
=−(x+1)22 - [(3x−1)2(3x−1)(2x)−(x2)(3)]
=−(x+1)22 -[(3x−1)26x2−2x−3x2]
=−(x+1)22 - [(3x−1)23x2−2x2]
=−(x+1)22 -x(3x−1)2(3x−2)