Solveeit Logo

Question

Mathematics Question on Derivatives

Find the derivative of
(i) 2x - 34\frac{3}{4}
(ii)(5x3+3x-1)(x-1)
(iii) x-3(5+3x) (iv)x5(3-6x-9)
(v) x-4(3-4x-5) (vi)2x+1x23x1\frac{2}{x+1}-\frac{x^2}{3x-1}

Answer

(i) Let f(x)=2x-34\frac{3}{4}
f'(x)=ddx\frac{d}{dx} (2x-34\frac{3}{4})
=2ddx\frac{d}{dx}(x) -ddx\frac{d}{dx}(34\frac{3}{4})
=2-0
=2


(ii) Let f (x)=(5x3+3x-1) (x - 1)
By Leibnitz product rule,
ƒ'(x)=(5x3 +3x−1) = ddx\frac{d}{dx}(x −1)+(x−1) = (5x3 +3x−1)
=(5x3+3x-1)(1)+(x-1)(5.3x2+3-0)
=(5x3+3x-1)+(x-1) (15x2+3)
=5x3+3x-1+15x3+3x-15x2-3
=20x3-15x2+6x-4


(iii) Let f(x) = x-3 (5+3x)
By Leibnitz product rule,
ƒ′(x) = x-3ddx\frac{d}{dx}(5+3x)+(5+3x)ddx\frac{d}{dx} (x-3)
= x-3 (0+3)+(5+3x)(−3x-3-1)
=x-3(3)+(5+3x)(-3x-4)
=3x-3-15x-4-9x-3
=-6x-3-15x-4
=3x3x{\frac{-3x^{-3}}{x}}(2x+5)
=3x4-\frac{3}{x^4}(5+2x)


(iv) Let f (x) = x5(3-6x-9)
By Leibnitz product rule,
ƒ′(x) = x5-(3–6x-9)+(3–6x-9) ddx\frac{d}{dx}(x5)
=x5 {0-6(-9)x-9-1}+(3–6x-9) (5x4)
= x5(54x-10)+15x4-30x-5
=54x-5+15x4-30x-5
= 24x-5+15x4
=15x4+24x5\frac{15x^4+24}{x^5}


(v) Let f (x) = x4(3-4x-5)
By Leibnitz product rule,
ƒ'(x) = x-4 ddx\frac{d}{dx}(3-4x-5)+(3-4x-5)ddx\frac{d}{dx}(x-4)
= x-4{0-4(-5) x-5-1}+(3-4x-5)(-4)x-4-1
x-4(20x-6)+(3-4x-5)(-4x-5)
=20x-10-12x-5+16x-10
=36x-10-12x-5
=12x5-\frac{12}{x^5} + 36x10\frac{36}{x^{10}}


(vi) Let f (x) =2x+1x23x1\frac{2}{x+1}-\frac{x^2}{3x-1}
f '(x) =ddx\frac{d}{dx}(2x+1\frac{2}{x+1}) - ddx\frac{d}{dx}(x23x1\frac{x^2}{3x-1})
By the quotient rule,
f'(x)=[(x+1)ddx\frac{d}{dx}(2)-2ddx\frac{d}{dx}(x+1) /(x+1)2]-[(3x-1)ddx\frac{d}{dx}(x2)-x2ddx\frac{d}{dx}(3x-1)]
=[(x+1)(0)2(1)(x+1)2][\frac{(x+1)(0)-2(1)}{(x+1)^2}]-[(3x1)(2x)(x2)(3)(3x1)2\frac{(3x-1)(2x)-(x^2)(3)}{(3x-1)^2}]
=2(x+1)2-\frac{2}{(x+1)^2} - [(3x1)(2x)(x2)(3)(3x1)2][\frac{(3x-1)(2x)-(x^2)(3)}{(3x-1)^2}]
=2(x+1)2-\frac{2}{(x+1)^2} -[6x22x3x2(3x1)2\frac{6x^2-2x-3x^2}{(3x-1)^2}]
=2(x+1)2-\frac{2}{(x+1)^2} - [3x22x2(3x1)2\frac{3x^2-2x^2}{(3x-1)^2}]
=2(x+1)2-\frac{2}{(x+1)^2} -x(3x2)(3x1)2\frac{(3x-2)}{(3x-1)^2}