Solveeit Logo

Question

Question: Find the derivative of function \[12{{x}^{2}}-31\] with respect to x?...

Find the derivative of function 12x23112{{x}^{2}}-31 with respect to x?

Explanation

Solution

We start solving the problem by applying derivative with respect to x for the given function. We then use the formula ddx(f(x)g(x))=ddx(f(x))ddx(g(x))\dfrac{d}{dx}\left( f\left( x \right)-g\left( x \right) \right)=\dfrac{d}{dx}\left( f\left( x \right) \right)-\dfrac{d}{dx}\left( g\left( x \right) \right) to proceed through the problem. We then use the facts that derivative of a constant is zero and ddx(af(x))=addx(f(x))\dfrac{d}{dx}\left( af\left( x \right) \right)=a\dfrac{d}{dx}\left( f\left( x \right) \right) to proceed further through the problem. We then use the formula ddx(xn)=n(xn1)\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\left( {{x}^{n-1}} \right) and make necessary calculations in order to get the required result.

Complete step-by-step answer:
According to the problem, we need to find the derivative of the function 12x23112{{x}^{2}}-31 with respect to x.
Let us apply the derivative with respect to x for the function 12x23112{{x}^{2}}-31.
So, we have ddx(12x231)\dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right) ---(1).
We know that ddx(f(x)g(x))=ddx(f(x))ddx(g(x))\dfrac{d}{dx}\left( f\left( x \right)-g\left( x \right) \right)=\dfrac{d}{dx}\left( f\left( x \right) \right)-\dfrac{d}{dx}\left( g\left( x \right) \right), we use this result in equation (1).
ddx(12x231)=ddx(12x2)ddx(31)\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=\dfrac{d}{dx}\left( 12{{x}^{2}} \right)-\dfrac{d}{dx}\left( 31 \right) ---(2).
We know that the derivative of any constant ‘a’ is zero i.e., ddx(a)=0\dfrac{d}{dx}\left( a \right)=0 and ddx(af(x))=addx(f(x))\dfrac{d}{dx}\left( af\left( x \right) \right)=a\dfrac{d}{dx}\left( f\left( x \right) \right). We use these results in equation (2).
ddx(12x231)=12ddx(x2)0\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=12\dfrac{d}{dx}\left( {{x}^{2}} \right)-0.
ddx(12x231)=12ddx(x2)\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=12\dfrac{d}{dx}\left( {{x}^{2}} \right) ---(3).
We know that ddx(xn)=n(xn1)\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\left( {{x}^{n-1}} \right). We use this result in equation (3).
ddx(12x231)=12(2x21)\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=12\left( 2{{x}^{2-1}} \right).
ddx(12x231)=12(2x1)\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=12\left( 2{{x}^{1}} \right).
ddx(12x231)=12(2x)\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=12\left( 2x \right).
ddx(12x231)=24x\Rightarrow \dfrac{d}{dx}\left( 12{{x}^{2}}-31 \right)=24x.
So, we have the derivative of the function 12x23112{{x}^{2}}-31 as 24x24x.
∴ The derivative of the function 12x23112{{x}^{2}}-31 is 24x24x.

Note: We should not confuse the formulas of derivatives. We should not make calculation mistakes while solving this problem. Alternatively, we can solve this problem as follows:
We know that the derivative of the function f(x)f\left( x \right) is defined as limh0(f(x+h)f(x)h)\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right).
Let us assume f(x)=12x231f\left( x \right)=12{{x}^{2}}-31.
So, we have f(x)=limh0(f(x+h)f(x)h){{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right).
f(x)=limh0(12(x+h)231(12x231)h)\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{12{{\left( x+h \right)}^{2}}-31-\left( 12{{x}^{2}}-31 \right)}{h} \right).
f(x)=limh0(12(x2+h2+2hx)3112x2+31h)\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{12\left( {{x}^{2}}+{{h}^{2}}+2hx \right)-31-12{{x}^{2}}+31}{h} \right).
f(x)=limh0(12x2+12h2+24hx12x2h)\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{12{{x}^{2}}+12{{h}^{2}}+24hx-12{{x}^{2}}}{h} \right).
f(x)=limh0(12h2+24hxh)\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{12{{h}^{2}}+24hx}{h} \right).
f(x)=limh0(12h+24x)\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 12h+24x \right).
f(x)=12(0)+24x\Rightarrow {{f}^{'}}\left( x \right)=12\left( 0 \right)+24x.
f(x)=0+24x\Rightarrow {{f}^{'}}\left( x \right)=0+24x.
f(x)=24x\Rightarrow {{f}^{'}}\left( x \right)=24x.
So, the derivative of the function 12x23112{{x}^{2}}-31 is 24x24x.