Question
Mathematics Question on Derivatives
Find the derivative of x−axn−an for some constant a.
Answer
Let f (x)= x−axn−an
⇒f'(x)= dxd(x−axn−an)
By the quotient rule,
f'(x)= (x-a)dxd( xn -an) - (xn -an)\frac{d}{dx}$$\frac{(x-a)}{(x-a)^2}
= (x−a)2(x−a)(nxn−1−0)−(xn−an)
= (x−a)2nxn−anxn−a−xn+an