Solveeit Logo

Question

Mathematics Question on Derivatives

Find the derivative of xnanxa\frac{x^n-a^n}{x-a} for some constant a.

Answer

Let f (x)= xnanxa\frac{x^n-a^n}{x-a}
\Rightarrowf'(x)= ddx\frac{d}{dx}(xnanxa\frac{x^n-a^n}{x-a})
By the quotient rule,
f'(x)= (x-a)ddx\frac{d}{dx}( xn -an) - (xn -an)\frac{d}{dx}$$\frac{(x-a)}{(x-a)^2}
= (xa)(nxn10)(xnan)(xa)2\frac{(x-a)(nx^{n-1}-0)-(x^n -a^n)}{(x-a)^2}
= nxnanxnaxn+an(xa)2\frac{nx^n-a^nx^{n-a}-x^n+a^n}{(x-a)^2}