Solveeit Logo

Question

Mathematics Question on limits and derivatives

Find the derivative of x5cosxsinx\frac{x^{5}-cos\,x}{sin\,x}.

A

x5cosxsin2x\frac{x^{5}\,cos\,x}{sin^{2}\,x}

B

1sinxx5cosxsin2x\frac{1}{sin\,x}-\frac{x^{5}\,cos\,x}{sin^{2}\,x}

C

xsin2x\frac{x}{sin^{2}\,x}

D

None of these

Answer

None of these

Explanation

Solution

Let f(x)=x5cosxsinxf\left(x\right)=\frac{x^{5}-cos\,x}{sin\,x} f(x)=(x5cosx)sinx(x5cosx)(sinx)(sinx)2f'\left(x\right)=\frac{\left(x^{5}-cos\,x\right)'sin\,x-\left(x^{5}-cos\,x\right)\left(sin\,x\right)'}{\left(sin\,x\right)^{2}} \\{using quotient rule\\} =(5x4+sinx)sinx(x5cosx)cosxsin2x=\frac{\left(5x^{4}+sin\,x\right)sin\,x-\left(x^{5}-cos\,x\right)cos\,x}{sin^{2}\,x} =x5cosx+5x4sinx+1sin2x=\frac{-x^{5}\,cos\,x+5x^{4}\,sin\,x+1}{sin^{2}\,x}