Solveeit Logo

Question

Mathematics Question on limits and derivatives

Find the derivative of cosx1+sinx\frac{cos\,x}{1+sin\,x}.

A

(1+sinx)2-(1 + sinx)^2

B

1(1+sinx)\frac{1}{\left(1+sin\,x\right)}

C

(11+sinx)\left(\frac{-1}{1+sin\,x}\right)

D

None of these

Answer

(11+sinx)\left(\frac{-1}{1+sin\,x}\right)

Explanation

Solution

Let y=cosx1+sinxy=\frac{cos\,x}{1+sin\,x} Differentiating both sides with respect to xx, we get dydx=ddx(cosx1+sinx)\frac{dy}{dx}=\frac{d}{dx}\left(\frac{cos\,x}{1+sin\,x}\right) =(1+sinx)ddx(cosx)cosxddx(1+sinx)(1+sinx)2=\frac{\left(1+sin\,x\right) \frac{d}{dx}\left(cos\,x\right)-cos\,x \frac{d}{dx}\left(1+sin\,x\right)}{\left(1+sin\,x\right)^{2}} =(1+sinx)(sinx)cosx(cosx)(1+sinx)2=\frac{\left(1+sin\,x\right)\left(-sin\,x\right)-cos\,x\left(cos\,x\right)}{\left(1+sin\,x\right)^{2}} =sinxsin2xcos2x(1+sinx)2=\frac{-sin\,x-sin^{2}\,x-cos^{2}\,x}{\left(1+sin\,x\right)^{2}} =(1+sinx)(1+sinx)2=11+sinx=\frac{-\left(1+sin\,x\right)}{\left(1+sin\,x\right)^{2}}=\frac{-1}{1+sin\,x}