Solveeit Logo

Question

Question: Find the derivative of \(f({e^{\tan x}})\) with respect to x at x=0, It is given that \({f'}(1) = 5\...

Find the derivative of f(etanx)f({e^{\tan x}}) with respect to x at x=0, It is given that f(1)=5{f'}(1) = 5.

Explanation

Solution

This type of question can be solved by using basic differentiation formulas. Here the given function f(etanx)f({e^{\tan x}}) is a composite function. To obtain differentiation of composite function use the chain rule of differential calculus. Chain rule of differential calculus is dydx=dydududx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}. Let’s assume u=etanxu = {e^{\tan x}} and v=tanxv = \tan x to solve easily. Then use basic differentiation formulas such as ddx(tanx)=sec2x\dfrac{d}{{dx}}(\tan x) = {\sec ^2}x, ddx(ex)=ex\dfrac{d}{{dx}}({e^x}) = {e^x}. After getting the differential form, put x=0 in the equation along with f(1)=5{f'}(1) = 5. We will obtain a derivative of f(etanx)f({e^{\tan x}}).

Complete step-by-step answer:
Here the given function is f(etanx)f({e^{\tan x}}).
Let’s say y=f(etanx)y = f({e^{\tan x}}).
Here the given function y is a composite function of calculus.
Derivative of the composite function can be obtained by using the chain rule of differential calculus.
Chain rule of differential calculus is given by dydx=dydududx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}.
Now for the given function y=f(etanx)y = f({e^{\tan x}}), let’s assume u=etanxu = {e^{\tan x}} and v=tanxv = \tan x.
So, u=etanx=evu = {e^{\tan x}} = {e^v}
And,y=f(etanx)=f(u)y = f({e^{\tan x}}) = f(u).
Taking derivative of function y with respect to x on both side of the equation,
\Rightarrow dydx=ddx(f(u))\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(f(u))
Now using the chain rule of differential calculus,
\Rightarrow dydx=ddx(f(u))=ddu(f(u))dudx\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(f(u)) = \dfrac{d}{{du}}(f(u)) \cdot \dfrac{{du}}{{dx}}
As we know from basic function of derivative ddu(f(u))=f(u)\dfrac{d}{{du}}(f(u)) = {f'}(u)
So, dydx=f(u)dudx\dfrac{{dy}}{{dx}} = {f'}(u) \cdot \dfrac{{du}}{{dx}}
Now, u=etanx=evu = {e^{\tan x}} = {e^v}
Differentiating the above equation with respect to x,
\Rightarrow ddx(u)=ddx(ev)\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}({e^v})
Again using chain rule,
\Rightarrow ddx(ev)=ddv(ev)dvdx\dfrac{d}{{dx}}({e^v}) = \dfrac{d}{{dv}}({e^v}) \cdot \dfrac{{dv}}{{dx}}
Put v=tanxv = \tan x in above equation,
\Rightarrow ddx(ev)=ddv(ev)ddx(tanx)\dfrac{d}{{dx}}({e^v}) = \dfrac{d}{{dv}}({e^v}) \cdot \dfrac{d}{{dx}}(\tan x)
As we know that ddx(ex)=ex\dfrac{d}{{dx}}({e^x}) = {e^x} and ddx(tanx)=sec2x\dfrac{d}{{dx}}(\tan x) = {\sec ^2}x
So simplifying,
\Rightarrow ddx(ev)=evsec2x\dfrac{d}{{dx}}({e^v}) = {e^v} \cdot {\sec ^2}x.
Put, v=tanxv = \tan x in above equation,
So, dudx=ddx(ev)=etanxsec2x\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}({e^v}) = {e^{\tan x}} \cdot {\sec ^2}x
Now in equation dydx=f(u)dudx\dfrac{{dy}}{{dx}} = {f'}(u) \cdot \dfrac{{du}}{{dx}}, put value of dudx\dfrac{{du}}{{dx}}.
So, dydx=f(u)ev=f(u)etanxsec2x\dfrac{{dy}}{{dx}} = {f'}(u) \cdot {e^v} = {f'}(u) \cdot {e^{\tan x}} \cdot {\sec ^2}x.
Putting, u=etanxu = {e^{\tan x}} in above equation,
\Rightarrow dydx=f(etanx)etanxsec2x\dfrac{{dy}}{{dx}} = {f'}({e^{\tan x}}) \cdot {e^{\tan x}} \cdot {\sec ^2}x
This equation is the derivative form of function f(etanx)f({e^{\tan x}}) with respect to x.
Now, for given condition at x=0, f(1)=5{f'}(1) = 5
Putting x=0 in final derivative form,
\Rightarrow dydxx=0=f(etan0)etan0sec20{\dfrac{{dy}}{{dx}}_{x = 0}} = {f'}({e^{\tan 0}}) \cdot {e^{\tan 0}} \cdot {\sec ^2}0
As we know that tan0=0\tan 0 = 0 and sec0=1\sec 0 = 1,
So,
\Rightarrow dydxx=0=f(e0)e0(1)2{\dfrac{{dy}}{{dx}}_{x = 0}} = {f'}({e^0}) \cdot {e^0} \cdot {(1)^2}
And e0=1{e^0} = 1,
So, dydxx=0=f(1)11{\dfrac{{dy}}{{dx}}_{x = 0}} = {f'}(1) \cdot 1 \cdot 1
\Rightarrow dydxx=0=f(1){\dfrac{{dy}}{{dx}}_{x = 0}} = {f'}(1)
Now given that f(1)=5{f'}(1) = 5 So, dydxx=0=f(1)=5{\dfrac{{dy}}{{dx}}_{x = 0}} = {f'}(1) = 5

So, the derivative of the function f(etanx)f({e^{\tan x}}) with respect to x at x=0, is 5.

Note: Derivative of the composite function f(g(x))f(g(x)) (function of function) can be solved by chain rule of derivation. But if a given function is multiplication of two functions like f(x)g(x)f(x) \cdot g(x), then we have to use the product rule of derivation. Product rule of derivation is given by, ddx(f(x)g(x))=(ddxf(x))g(x)+f(x)(ddxg(x))\dfrac{d}{{dx}}(f(x) \cdot g(x)) = (\dfrac{d}{{dx}}f(x)) \cdot g(x) + f(x) \cdot (\dfrac{d}{{dx}}g(x)). If the question is like tanxf(ex)\tan x \cdot f({e^x}) then we have to use the product rule of derivation.