Solveeit Logo

Question

Question: Find the derivative of \(\dfrac{x+\cos x}{\text{tan}x}\)....

Find the derivative of x+cosxtanx\dfrac{x+\cos x}{\text{tan}x}.

Explanation

Solution

Hint:To differentiate the function given is a question; we will have to use quotient rule of differentiation and sum rule of differentiation.

Complete step-by-step answer:
The function given in question for which we have to find derivative is in the form of f(x)g(x)\dfrac{\text{f}\left( x \right)}{g\left( x \right)} where f(x)=x+cosxf\left( x \right)=x+\cos x and g(x)=tanxg\left( x \right)=\tan x . To differentiate a function of the form f(x)g(x)\dfrac{\text{f}\left( x \right)}{g\left( x \right)} , we will use the quotient rule of differentiation. The quotient rule of differentiate says that the derivative of the function f(x)g(x)\dfrac{\text{f}\left( x \right)}{g\left( x \right)} is calculated as shown below:
ddx[f(x)g(x)]=g(x)(ddx[f(x)])f(x)(ddx[g(x)])[g(x)]2\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{g\left( x \right)\left( \dfrac{d}{dx}\left[ f\left( x \right) \right] \right)-f\left( x \right)\left( \dfrac{d}{\text{dx}}\left[ g\left( x \right) \right] \right)}{{{\left[ g\left( x \right) \right]}^{2}}} .
In our question, we have to find the difference of x+cosxtanx\dfrac{x+\cos x}{\tan x} . In our case, f(x)=x+cosxf\left( x \right)=x+\cos x and g(x)=tanxg\left( x \right)=\tan x .
Therefore, after applying quotient rule of differentiation, we get:
ddx(x+cosxtanx)=tanx[ddx(x+cosx)](x+cosx)[ddx(tanx)](tanx)2\dfrac{\text{d}}{dx}\left( \dfrac{x+\cos x}{\tan x} \right)=\dfrac{\tan x\left[ \dfrac{d}{dx}\left( x+\cos x \right) \right]-\left( x+\cos x \right)\left[ \dfrac{d}{dx}\left( \tan x \right) \right]}{{{\left( \tan x \right)}^{2}}} …….(i)
In the equation (1), we have to find the derivative of terms (x+cosx)\left( x+\cos x \right) and (tanx)\left( \tan x \right) , the derivative of (x+cosx)\left( x+\cos x \right)can be calculated by sum rule of differentiate. The sum rule of differentiate says that the differentiation of the function f(x)=q(x)+r(x)f\left( x \right)=q\left( x \right)+r\left( x \right) is given as:
ddx[P(x)]=ddx[q(x)+r(x)]=ddx[q(x)]+ddx[r(x)]\dfrac{d}{dx}\left[ P\left( x \right) \right]=\dfrac{d}{dx}\left[ q\left( x \right)+r\left( x \right) \right]=\dfrac{d}{dx}\left[ q\left( x \right) \right]+\dfrac{d}{dx}\left[ r\left( x \right) \right] .
Using the above rule, the differentiation of (x+cosx)\left( x+\cos x \right) will be:
ddx[x+cosx]=ddx[x]+ddx[cosx]\dfrac{\text{d}}{dx}\left[ x+\cos x \right]=\dfrac{d}{dx}\left[ x \right]+\dfrac{d}{dx}\left[ \cos x \right] .
Now, we know that ddx[x]=1\dfrac{\text{d}}{dx}\left[ x \right]=1 and ddx[cosx]=sinx.\dfrac{d}{dx}\left[ \cos x \right]=-\sin x. we will put these values in above equation. After doing this we will get:
ddx[x+cosx]=1sinx.......(ii)\dfrac{d}{dx}\left[ x+\cos x \right]=1-\sin x.......(ii)
We also know that ddx[tanx]=sec2x...........(iii)\dfrac{\text{d}}{dx}\left[ \tan x \right]={{\sec }^{2}}x...........(iii)
Now, we will put the value of required derivatives from equation (ii) and (iii) into equation (i). After doing this we will get:
ddx[x+cosxtanx]=tanx[1sinx](x+cosx)(sec2x)tan2x\Rightarrow \dfrac{\text{d}}{dx}\left[ \dfrac{x+\cos x}{\tan x} \right]=\dfrac{\tan x\left[ 1-\sin x \right]-\left( x+\cos x \right)\left( se{{c}^{2}}x \right)}{{{\tan }^{2}}x} .
We can also write the above equation as:
ddx[x+cosxtanx]=(1sinx)tanx(x+cosx)(sec2x)tan2x\Rightarrow \dfrac{d}{dx}\left[ \dfrac{x+\cos x}{\tan x} \right]=\dfrac{\left( 1-\sin x \right)}{\tan x}-\dfrac{\left( x+\cos x \right)\left( {{\sec }^{2}}x \right)}{{{\tan }^{2}}x} .
ddx[x+cosxtanx]=cotxcosxxsec2xtan2xsecxtan2x\Rightarrow \dfrac{d}{dx}\left[ \dfrac{x+\cos x}{\tan x} \right]=\cot x-\cos x-\dfrac{x{{\sec }^{2}}x}{{{\tan }^{2}}x}-\dfrac{\sec x}{{{\tan }^{2}}x} .
ddx[x+cosxtanx]=cotxcosxxcosec2xcotxcosecx\Rightarrow \dfrac{d}{dx}\left[ \dfrac{x+\cos x}{\tan x} \right]=\cot x-\cos x-x\cos e{{c}^{2}}x-\cot x\cos ecx .
Hence, this is our required solution.

Note: We have calculated a general function of the derivative of (x+cosxtanx)\left( \dfrac{x+\cos x}{\tan x} \right) . If we will put different values of x as the above calculated derivative, we will get the values of the derivative at particular points. The important thing to note here is that the function (x+cosxtanx)\left( \dfrac{x+\cos x}{\tan x} \right) does not exist when tanx=0\tan x=0 i.e. x=nπx=n\pi . Thus, at the values of nπn\pi , this function is not differentiable.