Solveeit Logo

Question

Question: Find the derivative of \[\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)...

Find the derivative of x(x+4)32(4x3)43\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}with respect to xx.

Explanation

Solution

Hint: We use the product rule to define the derivative of product of two or more than two functions as ddx(f(x).g(x))=f(x).g(x)+g(x).f(x)\dfrac{d}{dx}\left( f(x).g(x) \right)={{f}^{'}}(x).g(x)+{{g}^{'}}(x).f(x) and quotient rule to define the derivative of two functions like ddx(uv)=vuuvv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}.

Complete step-by-step solution -
The given function isx(x+4)32(4x3)43\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}
Clearly , it is of the type f(x).g(x)h(x)\dfrac{f(x).g(x)}{h(x)}where f(x)=x;g(x)=(x+4)32f(x)=\sqrt{x};g(x)={{\left( x+4 \right)}^{\dfrac{3}{2}}}and h(x)=(4x3)43h(x)={{\left( 4x-3 \right)}^{\dfrac{4}{3}}}
Now to find its derivative , first we will find the expression for the derivative of the numerator. It will be helpful while applying quotient rules to find the derivative of the entire function .
To find the derivative of the numerator , we will apply the product rule of differentiation . We know , the product rule of differentiation is given as ddx(f(x).g(x))=f(x).g(x)+g(x).f(x)\dfrac{d}{dx}\left( f(x).g(x) \right)={{f}^{'}}(x).g(x)+{{g}^{'}}(x).f(x)
So, we will differentiate the numerator with respect to xx using the product rule of differentiation .
On differentiating the numerator with respect to xx, we get ,
ddx(x(x+4)32)=12x(x+4)32+32(x+4)12.x12\dfrac{d}{dx}\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right)=\dfrac{1}{2\sqrt{x}}{{\left( x+4 \right)}^{\dfrac{3}{2}}}+\dfrac{3}{2}{{\left( x+4 \right)}^{\dfrac{1}{2}}}.{{x}^{\dfrac{1}{2}}}
=(x+4)12[x+42x+32x]={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{x+4}{2\sqrt{x}}+\dfrac{3}{2}\sqrt{x} \right]
=(x+4)12[x+4+3x2x]={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{x+4+3x}{2\sqrt{x}} \right]
=(x+4)12[4x+42x]={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{4x+4}{2\sqrt{x}} \right]
=(x+4)12[2x+2x]={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{2x+2}{\sqrt{x}} \right]
Now, we will differentiate the entire function with respect to xx. To differentiate the entire function , we will apply the quotient rule of differentiation. For that , first we must know the quotient rule of differentiation. The quotient rule for differentiation is given as ddx(uv)=vuuvv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}.
So, on differentiating the function by applying quotient rule for the entire function , we get ,
ddx(x(x+4)32(4x3)43)=(4x3)43.ddx(x(x+4)32)(x(x+4)32).ddx(4x3)43((4x3)43)2\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}.\dfrac{d}{dx}\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right)-\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right).\dfrac{d}{dx}{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}{{{\left( {{\left( 4x-3 \right)}^{\dfrac{4}{3}}} \right)}^{2}}}
=(4x3)43.(x+4)12.(2x+2x)(x(x+4)32).43(4x3)13.4(4x3)83=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}.{{\left( x+4 \right)}^{\dfrac{1}{2}}}.\left( \dfrac{2x+2}{\sqrt{x}} \right)-\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right).\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}.4}{{{\left( 4x-3 \right)}^{\dfrac{8}{3}}}}
Now, we can take (4x3)13{{\left( 4x-3 \right)}^{\dfrac{1}{3}}} common in the numerator. So , we get ,
ddx(x(x+4)32(4x3)43)=(4x3)13(4x3)83[(4x3)(x+4)12.2x+2x(x+4)32.x.163]\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}}{{{\left( 4x-3 \right)}^{\dfrac{8}{3}}}}\left[ \left( 4x-3 \right){{\left( x+4 \right)}^{\dfrac{1}{2}}}.\dfrac{2x+2}{\sqrt{x}}-{{\left( x+4 \right)}^{\dfrac{3}{2}}}.\sqrt{x}.\dfrac{16}{3} \right]
Again , we can take (x+4)12{{\left( x+4 \right)}^{\dfrac{1}{2}}} common in the numerator. So , we get ,
ddx(x(x+4)32(4x3)43)=(x+4)12(4x3)73[3(4x3)(2x+2)(x+4)(x).163x]\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{3\left( 4x-3 \right)\left( 2x+2 \right)-\left( x+4 \right)\left( x \right).16}{3\sqrt{x}} \right]
=(x+4)12(4x3)73[24x2+6x1816x264x3x]=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{24{{x}^{2}}+6x-18-16{{x}^{2}}-64x}{3\sqrt{x}} \right]
=(x+4)12(4x3)73[8x258x183x]=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{8{{x}^{2}}-58x-18}{3\sqrt{x}} \right]
Hence , the derivative of the function x(x+4)32(4x3)43\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}with respect to xxis given as (x+4)12(4x3)73[8x258x183x]\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{8{{x}^{2}}-58x-18}{3\sqrt{x}} \right] .

Note: While differentiating (4x3)43{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}, keep in mind that it is a composite function , i.e of the formh(x)=p(q(x))h(x)=p(q(x)) and its derivative will be 43(4x3)13.4\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}.4and not 43(4x3)13\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}. Students usually make such mistakes and end up getting the wrong answer. Such mistakes should be avoided .