Solveeit Logo

Question

Question: Find the derivative of \(\dfrac{{{d}^{2}}\left( 2\cos x\cos 3x \right)}{d{{x}^{2}}}=\) \(1){{2}^{...

Find the derivative of d2(2cosxcos3x)dx2=\dfrac{{{d}^{2}}\left( 2\cos x\cos 3x \right)}{d{{x}^{2}}}=
1)22(22cos4x+cos2x)1){{2}^{2}}\left( {{2}^{2}}\cos 4x+\cos 2x \right)
2)22(22cos4x+cos2x)2){{2}^{2}}\left( -{{2}^{2}}\cos 4x+\cos 2x \right)
3)22(22cos4xcos2x)3){{2}^{2}}\left( {{2}^{2}}\cos 4x-\cos 2x \right)
4)22(22cos4x+cos2x)4)-{{2}^{2}}\left( {{2}^{2}}\cos 4x+\cos 2x \right)

Explanation

Solution

To solve this question we need to have the knowledge of differentiation. In the question given above the function is in terms of the product of two trigonometric functions cosx\cos x and cos3x\cos 3x. So to solve the problem we will use the formula of differentiation for uu and vv which implies d(uv)dx=udvdx+vdudx\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} . On solving this we get the first differentiation while we will differentiate again to find the second order differentiation of the result we got.

Complete step-by-step solution:
The question asks us to find the double differentiation of the function given to us which is 2cosxcos3x2\cos x\cos 3x. Now we will solve the problem by considering this function to be the product of the two other functions uu and vv where u=cosxu=\cos x and v=cos3xv=\cos 3x. To find the differentiation we will use the formula of the product of the two function which is d(uv)dx=udvdx+vdudx\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}. On applying the same we get:
d(2cosxcos3x)dx=2cosxdcos3xdx+cos3xd2cosxdx\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=2\cos x\dfrac{d\cos 3x}{dx}+\cos 3x\dfrac{d2\cos x}{dx}
d(2cosxcos3x)dx=2cosxdcos3xdx+2cos3xdcosxdx\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=2\cos x\dfrac{d\cos 3x}{dx}+2\cos 3x\dfrac{d\cos x}{dx}
As per the formula of differentiation we know that differentiation of the trigonometric function cosx\cos x is sinx-\sin x while differentiation of cos3x\cos 3x is 3sin3x-3\sin 3x. On applying the same in the above expression we get:
d(2cosxcos3x)dx=2cosx(3sin3x)+2cos3x(sinx)\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=2\cos x\left( -3\sin 3x \right)+2\cos 3x\left( -\sin x \right)
d(2cosxcos3x)dx=6cosxsin3x2cos3xsinx\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=-6\cos x\sin 3x-2\cos 3x\sin x
d(2cosxcos3x)dx=3[2cosxsin3x]1[2cos3xsinx]\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=-3\left[ 2\cos x\sin 3x \right]-1\left[ 2\cos 3x\sin x \right]
Now we will apply the formula of 2sinacosb=sin(a+b)+sin(ab)2\sin a\cos b=\sin \left( a+b \right)+\sin \left( a-b \right) in the above expression. On doing this we get:
d(2cosxcos3x)dx=3[sin4x+sin2x]1[sin4x+sin(2x)]\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=-3\left[ \sin 4x+\sin 2x \right]-1\left[ \sin 4x+\sin (-2x) \right]
d(2cosxcos3x)dx=3sin4x3sin2xsin4x+sin2x\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=-3\sin 4x-3\sin 2x-\sin 4x+\sin 2x
d(2cosxcos3x)dx=4sin4x2sin2x\Rightarrow \dfrac{d\left( 2\cos x\cos 3x \right)}{dx}=-4\sin 4x-2\sin 2x
dydx=4sin4x2sin2x\Rightarrow \dfrac{dy}{dx}=-4\sin 4x-2\sin 2x
The above is the result of one order differentiation, we will again differentiate it to find the double differentiation of the function given in the question. On again differentiating it we get:
d(dydx)dx=d(4sin4x2sin2x)dx\Rightarrow \dfrac{d\left( \dfrac{dy}{dx} \right)}{dx}=\dfrac{d\left( -4\sin 4x-2\sin 2x \right)}{dx}
d2ydx2=d(4sin4x)+d(2sin2x)dx\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d\left( -4\sin 4x \right)+d\left( -2\sin 2x \right)}{dx}
d2ydx2=d(4sin4x)dxd(2sin2x)dx\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{d\left( 4\sin 4x \right)}{dx}-\dfrac{d\left( 2\sin 2x \right)}{dx}
As per the formula of differentiation which says sinax\sin ax is acosaxa\cos ax. On applying the same trigonometric function sinx\sin x is cosx\cos x while differentiation of sin3x\sin 3x is 3cos3x3\cos 3x. On applying the same in the above expression we get:
d2ydx2=16cos4x4cos2x\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-16\cos 4x-4\cos 2x
d2ydx2=22[22cos4x+cos2x]\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{2}^{2}}\left[ {{2}^{2}}\cos 4x+\cos 2x \right]
\therefore d2(2cosxcos3x)dx2\dfrac{{{d}^{2}}\left( 2\cos x\cos 3x \right)}{d{{x}^{2}}} is 4)22(22cos4x+cos2x)4)-{{2}^{2}}\left( {{2}^{2}}\cos 4x+\cos 2x \right).

Note: To solve this type of question we need to know the formula for the differentiation of the trigonometric function. To find the double differentiation we will have to differentiate the result of the first order differentiation.