Solveeit Logo

Question

Question: Find the derivative of \[\dfrac{{{2^x}\cot x}}{{\sqrt x }}\]. A) \[\dfrac{{{2^x}}}{{\sqrt x }}\lef...

Find the derivative of 2xcotxx\dfrac{{{2^x}\cot x}}{{\sqrt x }}.
A) \dfrac{{{2^x}}}{{\sqrt x }}\left\\{ {\log 2\cot x - {{\csc }^2}x - \dfrac{{\cot x}}{{2x}}} \right\\}
B) \dfrac{{2\left( {x + 1} \right)}}{{\sqrt x }}\left\\{ {\log 2\cot x - {{\csc }^2}x - \dfrac{{\cot x}}{{2x}}} \right\\}
C) \dfrac{{{2^x}}}{{\sqrt x }}\left\\{ {\log 2\cot x - {{\csc }^2}x - \dfrac{{\cot x}}{{{x^2}}}} \right\\}
D) None of these

Explanation

Solution

Here, we will first assume u=2xu = {2^x}, v=cotxv = \cot x and w=x12w = {x^{ - \dfrac{1}{2}}} in the given equation and then use the product rule for differentiation, ddx(uvw)=uvw+uvw+uvw\dfrac{d}{{dx}}\left( {uvw} \right) = u'vw + uv'w + uvw' to find the derivate of the given equation.

Complete step by step solution: We are given that the equation is 2xcotxx\dfrac{{{2^x}\cot x}}{{\sqrt x }}.

We can rewrite the above equation as

2xcotx(x12) \Rightarrow {2^x}\cot x\left( {{x^{ - \dfrac{1}{2}}}} \right)

Let us assume that u=2xu = {2^x}, v=cotxv = \cot x and w=x12w = {x^{ - \dfrac{1}{2}}} in the above equation, we get

We know that the product rule for differentiation is ddx(uvw)=uvw+uvw+uvw\dfrac{d}{{dx}}\left( {uvw} \right) = u'vw + uv'w + uvw'.

First, we will find the first order derivatives of uu, vv and ww.

u=ddx2x u=2xlog2  \Rightarrow u' = \dfrac{d}{{dx}}{2^x} \\\ \Rightarrow u' = {2^x}\log 2 \\\ v=ddxcotx v=csc2x  \Rightarrow v' = \dfrac{d}{{dx}}\cot x \\\ \Rightarrow v' = - {\csc ^2}x \\\ w=ddxx12 w=12x121 w=12x32  \Rightarrow w' = \dfrac{d}{{dx}}{x^{ - \dfrac{1}{2}}} \\\ \Rightarrow w' = - \dfrac{1}{2}{x^{ - \dfrac{1}{2} - 1}} \\\ \Rightarrow w' = - \dfrac{1}{2}{x^{ - \dfrac{3}{2}}} \\\

Substituting the above values of uu', vv' and ww' in the above product rule, we get

ddx(2xcotx(x12))=2xlog2cotxx12+2x(csc2x)x12+2xcotx(12x32) ddx(2xcotx(x12))=2xlog2cotx1x+2x(csc2x)1x+2xcotx(12xx) ddx(2xcotx(x12))=2xx(log2cotxcsc2x+cotx2x)  \Rightarrow \dfrac{d}{{dx}}\left( {{2^x}\cot x\left( {{x^{ - \dfrac{1}{2}}}} \right)} \right) = {2^x}\log 2 \cdot \cot x \cdot {x^{ - \dfrac{1}{2}}} + {2^x}\left( { - {{\csc }^2}x} \right){x^{ - \dfrac{1}{2}}} + {2^x}\cot x\left( { - \dfrac{1}{2}{x^{ - \dfrac{3}{2}}}} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {{2^x}\cot x\left( {{x^{ - \dfrac{1}{2}}}} \right)} \right) = {2^x}\log 2 \cdot \cot x \cdot \dfrac{1}{{\sqrt x }} + {2^x}\left( { - {{\csc }^2}x} \right)\dfrac{1}{{\sqrt x }} + {2^x}\cot x\left( { - \dfrac{1}{{2x\sqrt x }}} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {{2^x}\cot x\left( {{x^{ - \dfrac{1}{2}}}} \right)} \right) = \dfrac{{{2^x}}}{{\sqrt x }}\left( {\log 2 \cdot \cot x - {{\csc }^2}x + \dfrac{{\cot x}}{{2x}}} \right) \\\

Hence, option A is correct.

Note: Note: While solving these types of problems, students have to rewrite the given equation as 2xcotx(x12){2^x}\cot x\left( {{x^{ - \dfrac{1}{2}}}} \right) and take each expression equal to some variables to use the product rule. Students should know that a derivative of a function of variabley=f(x)y = f\left( x \right) is a measure of the rate at which the value yy of the function changes with respect to the change of the variable xx. The knowledge about basic differentiation rules will be really helpful.