Solveeit Logo

Question

Question: Find the derivative of \[\dfrac{1}{{{x^4}\sec x}}\]? A. \[\dfrac{{\left[ {4\cos x - x\sin x} \righ...

Find the derivative of 1x4secx\dfrac{1}{{{x^4}\sec x}}?
A. [4cosxxsinx]x5\dfrac{{\left[ {4\cos x - x\sin x} \right]}}{{{x^5}}}
B. [xsinx+4cosx]x5\dfrac{{ - \left[ {x\sin x + 4\cos x} \right]}}{{{x^5}}}
C. [4cosx+xsinx]x5\dfrac{{\left[ {4\cos x + x\sin x} \right]}}{{{x^5}}}
D. None of these

Explanation

Solution

We need to find the derivative of 1x4secx\dfrac{1}{{{x^4}\sec x}} with respect to ‘x’. Before differentiating we simplify it by using the definition of secant function. After simplifying we will have equation of the form y=g(x)h(x)y = \dfrac{{g(x)}}{{h(x)}}, here both g(x)g(x) and h(x)h(x) are differentiable. To differentiate it we use the quotient rule, that is dydx=g(x)h(x)g(x)h(x)(h(x))2\dfrac{{dy}}{{dx}} = \dfrac{{g'(x)h(x) - g(x)h'(x)}}{{{{(h(x))}^2}}}.

Complete step by step answer:
Now consider y=1x4secxy = \dfrac{1}{{{x^4}\sec x}}
We know by the definition of secant function, secx=1cosx\sec x = \dfrac{1}{{\cos x}}. Then
y=1x4(1cosx)y = \dfrac{1}{{{x^4}\left( {\dfrac{1}{{\cos x}}} \right)}}
y=cosxx4\Rightarrow y = \dfrac{{\cos x}}{{{x^4}}}.
Now differentiating with respect to ‘x’
dydx=ddx(cosxx4)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{\cos x}}{{{x^4}}}} \right).
Now to differentiate this we use quotient rule,
That is if we have f(x)=g(x)h(x)f(x) = \dfrac{{g(x)}}{{h(x)}} and h(x)0h(x) \ne 0. Then the quotient rule states that the derivative of f(x)f(x) is f1(x)=g(x)h(x)g(x)h(x)(h(x))2{f^1}(x) = \dfrac{{g'(x)h(x) - g(x)h'(x)}}{{{{(h(x))}^2}}}.
If we compare the above equation we have g(x)=cosxg(x) = \cos x and h(x)=x4h(x) = {x^4}.
dydx=ddx(cosxx4)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{\cos x}}{{{x^4}}}} \right)
Now applying the quotient rule we have,
dydx=(d(cosx)dx.x4cosx.d(x4)dx)(x4)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{d\left( {\cos x} \right)}}{{dx}}.{x^4} - \cos x.\dfrac{{d\left( {{x^4}} \right)}}{{dx}}} \right)}}{{{{\left( {{x^4}} \right)}^2}}}

We know the differentiation of cosine function that is d(cosx)dx=sinx\dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x and also using power rule of differentiation d(x4)dx=4x3\dfrac{{d\left( {{x^4}} \right)}}{{dx}} = 4{x^3}.
dydx=(sinx.x4cosx.4x3)(x4)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( { - \sin x.{x^4} - \cos x.4{x^3}} \right)}}{{{{\left( {{x^4}} \right)}^2}}}
Now taking x3{x^3}common in the numerator we have,
dydx=x3(x.sinx4cosx)x8\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^3}\left( { - x.\sin x - 4\cos x} \right)}}{{{x^8}}}
Cancelling the ‘x’ terms we have,
dydx=(x.sinx4cosx)x5\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( { - x.\sin x - 4\cos x} \right)}}{{{x^5}}}
Taking negative common on the numerator we have,
dydx=(x.sinx+4cosx)x5\therefore \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {x.\sin x + 4\cos x} \right)}}{{{x^5}}}.

Hence, the correct answer is option B.

Note: We have several rules of differentiation. We know the power rule of the differentiation that is the definition of xn{x^n} with respect to ‘x’ is ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}. We have used this in the above steps. We also have product rule that is if the function f(x) is the product of two functions, y=f(x)g(x)y = f(x)g(x) then product rule is given by y1=f1(x).g(x)+f(x).g(x){y^1} = {f^1}(x).g(x) + f(x).g'(x). We apply these rules depending on the given problem’s.