Solveeit Logo

Question

Question: Find the derivative of \({\csc ^2}x\), by using the first principle of derivatives....

Find the derivative of csc2x{\csc ^2}x, by using the first principle of derivatives.

Explanation

Solution

To solve this problem,consider Let f(x)=csc2xf(x) = {\csc ^2}x. Find f(x+h)f(x + h) and hence find f(x)f'(x)using the formula f(x)=limh0f(x+h)f(x)hf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}.

Complete step by step solution:
We are given a trigonometric function csc2x{\csc ^2}x.
We need to find its derivative by using the first principle of derivatives.
Now, let f(x)=csc2xf(x) = {\csc ^2}x
The formula for finding the derivatives using the first principle is as follows:
g(x)=limh0g(x+h)g(x)hg'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}
whereg(x)g'(x)denotes the derivative of the functiong(x)g(x)and h is a very small value such that g is defined for bothxxandx + hx{\text{ }} + {\text{ }}h
Therefore,
f(x)=limh0f(x+h)f(x)hf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}
Now, f(x)=csc2xf(x+h)=csc2(x+h)f(x) = {\csc ^2}x \Rightarrow f(x + h) = {\csc ^2}(x + h)
Then
f(x)=limh0csc2(x+h)csc2xhf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h}
Using the identity cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }}, we get

f(x)=limh01sin2(x+h)1sin2xh =limh0sin2xsin2(x+h)sin2(x+h)×sin2xh =limh01h×(sin2xsin2(x+h))×1sin2(x+h)×sin2x =limh01h×(sin2xsin2(x+h))×limh01sin2(x+h)×sin2x...........(1)  f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}(x + h)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h} \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{{{\sin }^2}x - {{\sin }^2}(x + h)}}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}}}{h} \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}...........(1) \\\

Now,

limh01sin2(x+h)×sin2x =1sin2(x+0)×sin2x =1sin2x×sin2x =1sin4x =csc4x.........(2)  \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\\ = \dfrac{1}{{{{\sin }^2}(x + 0) \times {{\sin }^2}x}} \\\ = \dfrac{1}{{{{\sin }^2}x \times {{\sin }^2}x}} \\\ = \dfrac{1}{{{{\sin }^4}x}} \\\ = {\csc ^4}x.........(2) \\\

And using the identity a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b), we have

limh01h×(sin2xsin2(x+h)) =limh01h×(sinxsin(x+h))×(sinxsin(x+h)).......(3)  \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (\sin x - \sin (x + h)) \times (\sin x - \sin (x + h)).......(3) \\\

We know that
sinA±sinB=2sin(A±B2)cos(AB2)\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)cos\left( {\dfrac{{A \mp B}}{2}} \right)
Here, in (3), we haveA=x,B=x+hA = x,B = x + h
We use this identity to simplify (3)

limh01h×(sin2xsin2(x+h)) =limh01h×(2sin(x(x+h))2)cos(x+(x+h)2)×2sin(x+(x+h))2)cos(x(x+h)2) =limh01h×2sin(h2)cos(x+h2)×2sin(x+h2)cos(h2).....(4)  \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (2\sin \dfrac{{(x - (x + h))}}{2})\cos (\dfrac{{x + (x + h)}}{2}) \times 2\sin \dfrac{{(x + (x + h))}}{2})\cos (\dfrac{{x - (x + h)}}{2}) \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2})\cos (x + \dfrac{h}{2}) \times 2\sin (x + \dfrac{h}{2})\cos (\dfrac{{ - h}}{2}).....(4) \\\

We will use the following facts in (4).

limθ0sinθθ=1 cos0=1 h0h20  \mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1 \\\ \cos 0 = 1 \\\ h \to 0 \Rightarrow \dfrac{{ - h}}{2} \to 0 \\\ limh01h×(sin2xsin2(x+h)) =limh01h×2sin(h2)×limh0cos(x+h2)×2limh0sin(x+h2)×limh0cos(h2) =limh0sin(h2)h2×limh0cos(x+h2)×2limh0sin(x+h2)×limh0cos(h2) =1×cos(x+0)×2×sin(x+0)×cos0 =2sinxcosx.........(5)  \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\\ = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\\ = \mathop { - \lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{{ - h}}{2})}}{{\dfrac{{ - h}}{2}}} \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\\ = - 1 \times \cos (x + 0) \times 2 \times \sin (x + 0) \times \cos 0 \\\ = - 2\sin x\cos x.........(5) \\\

Combining (1), (2), and (5), we get

f(x)=limh0csc2(x+h)csc2xh =2sinxcosxcsc4x =2sinxcosx1sin4x =2csc2xcotx  f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h} \\\ = - 2\sin x\cos x{\csc ^4}x \\\ = - 2\sin x\cos x\dfrac{1}{{{{\sin }^4}x}} \\\ = - 2{\csc ^2}x\cot x \\\

Hence the derivative of csc2x{\csc ^2}xis2csc2xcotx - 2{\csc ^2}x\cot x.

Note: One must remember thatlimh0sin(1h)1h0\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{1}{h})}}{{\dfrac{1}{h}}} \ne 0. This is because h0h \to 0,1h\dfrac{1}{h} \to \infty . Therefore, the formulalimθ0sinθθ=1\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1does not work here.