Solveeit Logo

Question

Question: Find the derivative of \(\cos e{c^2}x\), by using the first principal of derivatives?...

Find the derivative of cosec2x\cos e{c^2}x, by using the first principal of derivatives?

Explanation

Solution

In this particular type of question use the concept that to find the differentiation by first principle derivatives the formula is given as ddxf(x)=f(x)=limh0f(x+h)f(x)h\dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} and later on use the concept that limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 so use these concepts to reach the solution of the question.

Complete step-by-step answer:
Given equation:
cosec2x\cos e{c^2}x
Let,
f(x)=cosec2x\Rightarrow f\left( x \right) = \cos e{c^2}x............... (1)
Now we have to find its derivation using first principal of derivatives,
So according to first principal the derivative of function f(x) is given as,
ddxf(x)=f(x)=limh0f(x+h)f(x)h\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}............... (2)
So from equation (1) value of f (x + h) = cosec2(x+h)\cos e{c^2}\left( {x + h} \right)............... (3)
Now substitute the value from equation (1) and (3) in equation (2) we have,
ddxf(x)=f(x)=limh0cosec2(x+h)cosec2xh\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos e{c^2}\left( {x + h} \right) - \cos e{c^2}x}}{h}
Now as we know that cosec x = (1/sin x) so use this property in the above equation we have,
ddxf(x)=f(x)=limh01sin2(x+h)1sin2xh\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}\left( {x + h} \right)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h}
Now simplify this we have,
ddxf(x)=f(x)=limh0sin2xsin2(x+h)hsin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}x - {{\sin }^2}\left( {x + h} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now use the property that (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right) in the above equation we have,
ddxf(x)=f(x)=limh0(sinxsin(x+h))(sinx+sin(x+h))hsin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sin x - \sin \left( {x + h} \right)} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now as we know that sinCsinD=2sinCD2cosC+D2\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2} so use this property in the above equation we have,
ddxf(x)=f(x)=limh0(2sinxxh2cosx+x+h2)(sinx+sin(x+h))hsin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2\sin \dfrac{{x - x - h}}{2}\cos \dfrac{{x + x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now simplify it we have,

ddxf(x)=f(x)=limh0(2sinh2cos2x+h2)(sinx+sin(x+h))hsin2(x+h)sin2x \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2\sin \dfrac{{ - h}}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now as we know that sin (-x) = -sin x so we have,
ddxf(x)=f(x)=limh0(2sinh2cos2x+h2)(sinx+sin(x+h))hsin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {2\sin \dfrac{h}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now multiply and divide by 2 in denominator h term so we have,
ddxf(x)=f(x)=limh0(2sinh2cos2x+h2)(sinx+sin(x+h))2(h2)sin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {2\sin \dfrac{h}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{2\left( {\dfrac{h}{2}} \right){{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
ddxf(x)=f(x)=limh0(sinh2h2)(cos2x+h2)(sinx+sin(x+h))sin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} - \left( {\dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}} \right)\dfrac{{\left( {\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now as we know that limh0(sinh2h2)=1\mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}} \right) = 1, so use this property in the above equation we have,
ddxf(x)=f(x)=limh0(cos2x+h2)(sinx+sin(x+h))sin2(x+h)sin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} - \dfrac{{\left( {\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}
Now apply the limit i.e. substitute h = 0 we have,
ddxf(x)=f(x)=(cosx)(sinx+sinx)sin2xsin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{\left( {\cos x} \right)\left( {\sin x + \sin x} \right)}}{{{{\sin }^2}x{{\sin }^2}x}}
Now simplify this we have,
ddxf(x)=f(x)=2(cosx)(sinx)sin2xsin2x\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{2\left( {\cos x} \right)\left( {\sin x} \right)}}{{{{\sin }^2}x{{\sin }^2}x}}
ddxf(x)=f(x)=2(cosx)sin2xsinx\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{2\left( {\cos x} \right)}}{{{{\sin }^2}x\sin x}}
ddxf(x)=f(x)=2cosec2xcotx\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - 2\cos e{c^2}x\cot x, [cosxsinx=cotx,1sin2x=cosec2x]\left[ {\because \dfrac{{\cos x}}{{\sin x}} = \cot x,\dfrac{1}{{{{\sin }^2}x}} = \cos e{c^2}x} \right]
So this is the required differentiation of cosec2x\cos e{c^2}x using the first principle of derivatives.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of first derivative which is stated above, also remember that (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right) and the basic trigonometric identity such as sinCsinD=2sinCD2cosC+D2\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2} to get the required solution as above.