Solveeit Logo

Question

Question: Find the derivative of \( {{\cos }^{2}}x \) by using the first principle of derivatives....

Find the derivative of cos2x{{\cos }^{2}}x by using the first principle of derivatives.

Explanation

Solution

The first principle of derivatives: Given a function y=f(x)y=f\left( x \right) , its first derivative, the rate of change of y with respect to the change in x, is defined by: dydx=limh0[f(x+h)f(x)(x+h)(x)]\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] .
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity sin(A+B)sin(AB)=sin2Asin2B=cos2Bcos2A\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A .
We know that limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 .

Complete step by step answer:
Let's say that the given function is y=f(x)=cos2xy=f(x)={{\cos }^{2}}x .
For a change from xx to x+hx+h , the value of y changes from f(x)f(x) to f(x+h)f(x+h) .
The rate of change of y with respect to the change in x, will be given by:
Change in the value of yChange in the value of x=f(x+h)f(x)(x+h)(x)\dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)}
This rate for very small values of the change in x, is called the derivative of the function and is represented by dydx\dfrac{dy}{dx} .
dydx=limh0[f(x+h)f(x)(x+h)(x)]\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right]
ddx(cos2x)=limh0[cos2(x+h)cos2(x)(x+h)(x)]\dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right]
Using the identity cos2Bcos2A=sin(A+B)sin(AB){{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) , we get:
= limh0[sin[(x+h)+(x)]sin[(x+h)(x)]h]\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right]
= limh0[sin(2x+h)sin(h)h]\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right]
Which can be written as:
= limh0sin(2x+h)×limh0sin(h)h\underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}
Applying the limit and using limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 , we get:
= sin(2x+0)×1\sin \left( 2x+0 \right)\times 1
= sin2x\sin 2x
Therefore, the derivative of cos2x{{\cos }^{2}}x is sin2x\sin 2x .

Note: Differentiability of a Function: A function f(x)f(x) is differentiable at x=ax=a in its domain, if its derivative is continuous at aa .
This means that f(a){f}'(a) must exist, or equivalently: limxa+f(x)=limxaf(x)=limxaf(x)=f(a)\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like 00,±,00,0\dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the limxcf(x)g(x)\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} , if f(x)f(x) and g(x)g(x) are both 0 or ±\pm \infty (i.e. an Indeterminate Form) is equal to the limxcf(x)g(x)\underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} , if it exists.