Solveeit Logo

Question

Question: Find the derivative of \({{\cos }^{2}}x\), by using the first principle of derivatives. \[\]...

Find the derivative of cos2x{{\cos }^{2}}x, by using the first principle of derivatives. $$$$

Explanation

Solution

We recall the first principle of derivative. We assume a small change in xx as δx\delta x and its corresponding change in y=f(x)y=f\left( x \right) as δy\delta y. We find the average rate of change as δyδx=f(x+δx)f(x)δx\dfrac{\delta y}{\delta x}=\dfrac{f\left( x+\delta x \right)-f\left( x \right)}{\delta x} . We take limit δx0\delta x \to 0 to find the instantaneous rate of change as derivative of f(x)f\left( x \right).$$$$

Complete step-by-step solution:
We are given the function f(x)=cos2xf\left( x \right)={{\cos }^{2}}x in the question. Let us havey=cos2xy={{\cos }^{2}}x. Let δx\delta x be a very small change in xx and the corresponding change in yy be δy\delta y. So we have;
y+δy=cos2(x+δx)y+\delta y={{\cos }^{2}}\left( x+\delta x \right)
We subtract yy both sides of the above equation to have;

& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\\ & \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\\ & \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\\ \end{aligned}$$ We divide $\delta x$ both sides of the above step to have; $$\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}$$ We take limit $\delta x \to 0$ both sides of the above step to have; $$\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}$$ We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have; $$\begin{aligned} & \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\\ & \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\\ & \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\\ \end{aligned}$$ We use law of product if limits in the right hand side of the above step to have; $$\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}$$ We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have; $$\begin{aligned} & \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\\ & \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\\ & \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\\ \end{aligned}$$ We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have; $$\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos $$ We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have $$\begin{aligned} & \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\\ \end{aligned}$$ **Note:** We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.