Solveeit Logo

Question

Question: Find the derivative \(\dfrac{{dy}}{{dx}}\) for a given function \(y = {\sin ^{ - 1}}(\dfrac{{1 - {x^...

Find the derivative dydx\dfrac{{dy}}{{dx}} for a given function y=sin1(1x21+x2)y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})

Explanation

Solution

Derivative of the inverse function can be easily obtained by using the standard formulas. Before using the standard formula, try to convert the function in the easiest form. Function y=sin1(1x21+x2)y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}}) can be simplified by assuming x=tanθx = \tan \theta . And put tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and use standard formula Cos(2θ)=cos2θsin2θ\operatorname{Cos} (2\theta ) = {\cos ^2}\theta - {\sin ^2}\theta and sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1. After that use cosθ=sin((4n+1)π2θ)\cos \theta = \sin ((4n + 1)\dfrac{\pi }{2} - \theta ) to convert in sinθ\sin \theta form. After that use the standard derivation formula of tan1x{\tan ^{ - 1}}x to get dydx\dfrac{{dy}}{{dx}}.
Standard formula for derivation of tan1x{\tan ^{ - 1}}x is ddx(tan1x)=11+x2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}.

Complete step-by-step answer:
Here given function, y=sin1(1x21+x2)y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})
Before finding derivatives of function, let’s simplify it.
Let’s assume x=tanθx = \tan \theta
So, y=sin1(1tan2θ1+tan2θ)y = {\sin ^{ - 1}}(\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }})
Putting tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
So, y=sin1(1sin2θcos2θ1+sin2θcos2θ)y = {\sin ^{ - 1}}(\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}})
Simplifying the equitation,
y=sin1(cos2θsin2θcos2θ+sin2θ)y = {\sin ^{ - 1}}(\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta + {{\sin }^2}\theta }})
Using formula Cos(2θ)=cos2θsin2θ\operatorname{Cos} (2\theta ) = {\cos ^2}\theta - {\sin ^2}\theta and sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
So, y=sin1(cos(2θ)1)y = {\sin ^{ - 1}}(\dfrac{{\cos (2\theta )}}{1})
y=sin1(cos(2θ))y = {\sin ^{ - 1}}(\cos (2\theta ))
Now converting cosθ\cos \theta function in sinθ\sin \theta function by using formula, cosθ=sin((4n+1)π2θ)\cos \theta = \sin ((4n + 1)\dfrac{\pi }{2} - \theta ), where n is any natural number (nNn \in N).
So, converting the above equitation,
y=sin1(sin((4n+1)π22θ))y = {\sin ^{ - 1}}(\sin ((4n + 1)\dfrac{\pi }{2} - 2\theta ))
As we know that, sin1(sinθ)=θ{\sin ^{ - 1}}(\sin \theta ) = \theta , so simplifying above equation,
y=(4n+1)π22θ)y = (4n + 1)\dfrac{\pi }{2} - 2\theta )
Now as we assumed x=tanθx = \tan \theta , so θ=tan1x\theta = {\tan ^{ - 1}}x
Now putting θ=tan1x\theta = {\tan ^{ - 1}}x in above equation,
y=(4n+1)π22tan1xy = (4n + 1)\dfrac{\pi }{2} - 2{\tan ^{ - 1}}x
Above equation is the simplified form of the given function y=sin1(1x21+x2)y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}}).
Now derivations of the function yy can be obtained by derivation with respect to xx.
So, derivation of function yy with respect to xx, dydx=ddx((4n+1)π22tan1x)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2} - 2{\tan ^{ - 1}}x)
Using basic rule of derivatives of sum function, ddx(f(x)+g(x))=ddx(f(x))+ddx(g(x))\dfrac{d}{{dx}}(f(x) + g(x)) = \dfrac{d}{{dx}}(f(x)) + \dfrac{d}{{dx}}(g(x)),
Simplifying our equation dydx=ddx((4n+1)π2)+ddx(2tan1x)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2}) + \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)
As ddx(c)=0\dfrac{d}{{dx}}(c) = 0 means derivation of any constant term is zero, so, ddx((4n+1)π2)=0\,\dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2}) = 0.
So, dydx=0+ddx(2tan1x)\dfrac{{dy}}{{dx}} = 0 + \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)
dydx=ddx(2tan1x)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)
Using ddx(af(x))=addx(f(x)\dfrac{d}{{dx}}(af(x)) = a\dfrac{d}{{dx}}(f(x) in our equation, we will get dydx=(2)ddx(tan1x)\dfrac{{dy}}{{dx}} = ( - 2)\dfrac{d}{{dx}}({\tan ^{ - 1}}x)
Using standard formula for derivation of tan1x{\tan ^{ - 1}}x, ddx(tan1x)=11+x2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}
Putting this in our above equation,
dydx=(2)×(11+x2)\dfrac{{dy}}{{dx}} = ( - 2) \times (\dfrac{1}{{1 + {x^2}}})
So, dydx=21+x2\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}

So, derivation of given function y=sin1(1x21+x2)y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}}) is dydx=21+x2\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}

Note: If same type of function y=sin1(2x1+x2)y = {\sin ^{ - 1}}(\dfrac{{2x}}{{1 + {x^2}}}) is given then also assume x=tanθx = \tan \theta and use tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} to simplify.
After that use sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and sin(2θ)=2sinθcosθ\sin (2\theta ) = 2\sin \theta \cos \theta to convert 2x1+x2=sin2θ\dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta , So y=sin1(sin(2θ))=2θy = {\sin ^{ - 1}}(\sin (2\theta )) = 2\theta .
Then put θ=tan1x\theta = {\tan ^{ - 1}}x, so y=2tan1xy = 2{\tan ^{ - 1}}x.
After that do derivation of the function yy.
So dydx=ddx(2tan1x)=2ddx(tan1x)=2(11+x2)=21+x2\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{\tan ^{ - 1}}x) = 2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = 2(\dfrac{1}{{1 + {x^2}}}) = \dfrac{2}{{1 + {x^2}}}.