Solveeit Logo

Question

Question: Find the derivative: \[\cot x\]....

Find the derivative: cotx\cot x.

Explanation

Solution

Here, we will convert the given trigonometric function in terms of the other trigonometric functions. Then, we will use the quotient rule of derivatives to further solve the differentiation and find the required derivative of cotx\cot x.

Formula Used:
We will use the following formulas:
According to the quotient rule,
dydx=(II×ddxI)(I×ddxII)II2\dfrac{{dy}}{{dx}} = \dfrac{{\left( {II \times \dfrac{d}{{dx}}I} \right) - \left( {I \times \dfrac{d}{{dx}}II} \right)}}{{I{I^2}}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1

Complete step-by-step answer:
In order to find the derivative of cotx\cot x, first of all, we know that cotx=1tanx\cot x = \dfrac{1}{{\tan x}}
Also, we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
Hence, we will write cotx\cot x as:
cotx=1tanx\cot x = \dfrac{1}{{\tan x}}
cotx=1sinxcosx\cot x = \dfrac{1}{{\dfrac{{\sin x}}{{\cos x}}}}
This can be written as: cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}
Now, since we are required to find the derivative.
Therefore, we will use the quotient rule of derivatives.
According to the quotient rule, if y=IIIy = \dfrac{I}{{II}}, then
dydx=(II×ddxI)(I×ddxII)II2\dfrac{{dy}}{{dx}} = \dfrac{{\left( {II \times \dfrac{d}{{dx}}I} \right) - \left( {I \times \dfrac{d}{{dx}}II} \right)}}{{I{I^2}}}
Hence, using quotient rule in cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}, and differentiating both sides with respect to xx, we get,
dydxcotx=(sinx×ddxcosx)(cosx×ddxsinx)sin2x\dfrac{{dy}}{{dx}}\cot x = \dfrac{{\left( {\sin x \times \dfrac{d}{{dx}}\cos x} \right) - \left( {\cos x \times \dfrac{d}{{dx}}\sin x} \right)}}{{{{\sin }^2}x}}
Now using the differentiation formula dydxsinx=cosx\dfrac{{dy}}{{dx}}\sin x = \cos x and dydxcosx=sinx\dfrac{{dy}}{{dx}}\cos x = - \sin x, we get
dydxcotx=(sinx×(sinx))(cosx×cosx)sin2x\Rightarrow \dfrac{{dy}}{{dx}}\cot x = \dfrac{{\left( {\sin x \times \left( { - \sin x} \right)} \right) - \left( {\cos x \times \cos x} \right)}}{{{{\sin }^2}x}}
Multiplying the terms, we get
dydxcotx=sin2xcos2xsin2x=(sin2x+cos2x)sin2x\Rightarrow \dfrac{{dy}}{{dx}}\cot x = \dfrac{{ - {{\sin }^2}x - {{\cos }^2}x}}{{{{\sin }^2}x}} = \dfrac{{ - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}{{{{\sin }^2}x}}
Using the trigonometric identity, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, we get
dydxcotx=1sin2x\Rightarrow \dfrac{{dy}}{{dx}}\cot x = \dfrac{{ - 1}}{{{{\sin }^2}x}}
Using the reciprocal trigonometric function cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}}, we get
dydxcotx=cosec2x\Rightarrow \dfrac{{dy}}{{dx}}\cot x = - \cos e{c^2}x

Therefore, we get that the derivative of cotx\cot x is cosec2x - \cos e{c^2}x

Hence, this is the required answer.

Note: In mathematics, the rate of change of a function with respect to a variable is known as its derivative. Integration is the opposite of differentiation and hence it is called antiderivative. According to the quotient rule, it means that when two parts of a function are being divided, then, the derivative of a quotient is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.