Solveeit Logo

Question

Question: Find the degree measure of angle \(\theta \), if \(\sin \theta = \cos (\theta - 45),\) where \(\thet...

Find the degree measure of angle θ\theta , if sinθ=cos(θ45),\sin \theta = \cos (\theta - 45), where θ\theta and θ45\theta - {45^ \circ } are acute angles.

Explanation

Solution

Hint: Use the formula sinθ=cos(90θ)\sin \theta = \cos ({90^ \circ } - \theta ) and then equate angles on both sides.

Complete step-by-step answer:
From the question,
sinθ=cos(θ45) .....(i)\Rightarrow \sin \theta = \cos (\theta - 45){\text{ }}.....(i)
We know that, sinθ=cos(90θ),\sin \theta = \cos (90 - \theta ),putting this value in equation (i)(i):

cos(90θ)=cos(θ45), 90θ=θ45, 2θ=135, θ=1352=6712  \Rightarrow \cos ({90^ \circ } - \theta ) = \cos (\theta - {45^ \circ }), \\\ \Rightarrow {90^ \circ } - \theta = \theta - {45^ \circ }, \\\ \Rightarrow 2\theta = {135^ \circ }, \\\ \Rightarrow \theta = \dfrac{{{{135}^ \circ }}}{2} = 67{\dfrac{1}{2}^ \circ } \\\

Therefore, the value of angle θ\theta is 6712.67{\dfrac{1}{2}^ \circ }.

Note: Whenever we need to solve a trigonometric equation, we try to convert both sides of the equation in the same trigonometric ratio so that we can easily compare their angles.