Solveeit Logo

Question

Question: Find the current (in mA) through 12 $\Omega$ resistor. The four terminals are maintained at the pote...

Find the current (in mA) through 12 Ω\Omega resistor. The four terminals are maintained at the potentials shown.

Answer

1072.22 mA

Explanation

Solution

To find the current through the 12 Ω\Omega resistor, we will use Kirchhoff's Current Law (KCL) at the central node where all four resistors meet.

1. Define the node potential: Let the potential at the central node be V0V_0.

2. Apply Kirchhoff's Current Law (KCL): According to KCL, the algebraic sum of currents leaving a node is zero. We assume current flows out of the central node V0V_0 through each resistor.

  • Current through 12 Ω\Omega resistor (I1I_1): I1=V015V12ΩI_1 = \frac{V_0 - 15 \, V}{12 \, \Omega}

  • Current through 6 Ω\Omega resistor (I2I_2): I2=V02V6ΩI_2 = \frac{V_0 - 2 \, V}{6 \, \Omega}

  • Current through 4 Ω\Omega resistor (I3I_3): I3=V0(3V)4Ω=V0+3V4ΩI_3 = \frac{V_0 - (-3 \, V)}{4 \, \Omega} = \frac{V_0 + 3 \, V}{4 \, \Omega}

  • Current through 8 Ω\Omega resistor (I4I_4): I4=V04V8ΩI_4 = \frac{V_0 - 4 \, V}{8 \, \Omega}

Applying KCL at the central node: I1+I2+I3+I4=0I_1 + I_2 + I_3 + I_4 = 0 V01512+V026+V0+34+V048=0\frac{V_0 - 15}{12} + \frac{V_0 - 2}{6} + \frac{V_0 + 3}{4} + \frac{V_0 - 4}{8} = 0

3. Solve for V0V_0: To eliminate the denominators, multiply the entire equation by the least common multiple (LCM) of 12, 6, 4, and 8, which is 24.

24(V01512)+24(V026)+24(V0+34)+24(V048)=024 \left( \frac{V_0 - 15}{12} \right) + 24 \left( \frac{V_0 - 2}{6} \right) + 24 \left( \frac{V_0 + 3}{4} \right) + 24 \left( \frac{V_0 - 4}{8} \right) = 0

2(V015)+4(V02)+6(V0+3)+3(V04)=02(V_0 - 15) + 4(V_0 - 2) + 6(V_0 + 3) + 3(V_0 - 4) = 0

Expand the terms: 2V030+4V08+6V0+18+3V012=02V_0 - 30 + 4V_0 - 8 + 6V_0 + 18 + 3V_0 - 12 = 0

Combine terms with V0V_0: (2+4+6+3)V0=15V0(2 + 4 + 6 + 3)V_0 = 15V_0

Combine constant terms: 308+1812=38+1812=2012=32-30 - 8 + 18 - 12 = -38 + 18 - 12 = -20 - 12 = -32

So the equation becomes: 15V032=015V_0 - 32 = 0 15V0=3215V_0 = 32 V0=3215VV_0 = \frac{32}{15} \, V

4. Calculate the current through the 12 Ω\Omega resistor: The current through the 12 Ω\Omega resistor is given by I12Ω=VhighVlowRI_{12\Omega} = \frac{V_{\text{high}} - V_{\text{low}}}{R}. Since 15V>V0=32/15V2.13V15V > V_0 = 32/15 V \approx 2.13 V, the current flows from the 15V terminal towards the central node.

I12Ω=15VV012ΩI_{12\Omega} = \frac{15 \, V - V_0}{12 \, \Omega} I12Ω=15321512I_{12\Omega} = \frac{15 - \frac{32}{15}}{12} I12Ω=15×15321512I_{12\Omega} = \frac{\frac{15 \times 15 - 32}{15}}{12} I12Ω=225321512I_{12\Omega} = \frac{\frac{225 - 32}{15}}{12} I12Ω=1931512I_{12\Omega} = \frac{\frac{193}{15}}{12} I12Ω=19315×12I_{12\Omega} = \frac{193}{15 \times 12} I12Ω=193180AI_{12\Omega} = \frac{193}{180} \, A

5. Convert the current to milliampere (mA): To convert Amperes (A) to milliamperes (mA), multiply by 1000. I12Ω=193180×1000mAI_{12\Omega} = \frac{193}{180} \times 1000 \, mA I12Ω=193×10018mAI_{12\Omega} = \frac{193 \times 100}{18} \, mA I12Ω=193×509mAI_{12\Omega} = \frac{193 \times 50}{9} \, mA I12Ω=96509mAI_{12\Omega} = \frac{9650}{9} \, mA

I12Ω1072.22mAI_{12\Omega} \approx 1072.22 \, mA

The current through the 12 Ω\Omega resistor is approximately 1072.22 mA.

Explanation of the solution:

  1. Identify the common node where all resistors connect. Assign an unknown potential (V0V_0) to this node.
  2. Apply Kirchhoff's Current Law (KCL) at this node: the sum of currents leaving the node is zero.
  3. Express each current using Ohm's Law (I=ΔVRI = \frac{\Delta V}{R}), where ΔV\Delta V is the potential difference across the resistor.
  4. Formulate a linear equation in terms of V0V_0.
  5. Solve the equation for V0V_0.
  6. Substitute the calculated V0V_0 back into the current expression for the 12 Ω\Omega resistor.
  7. Convert the current from Amperes to milliamperes.

Answer:

The current through the 12 Ω\Omega resistor is approximately 1072.22mA1072.22 \, mA.