Solveeit Logo

Question

Question: Find the cube root of \(27\left( {\operatorname{Cos} {{30}^o} + i\operatorname{Sin} {{30}^o}} \right...

Find the cube root of 27(Cos30o+iSin30o)27\left( {\operatorname{Cos} {{30}^o} + i\operatorname{Sin} {{30}^o}} \right) that, when represented graphically lies in second quadrant.
A. 3(Cos10o+iSin10o)3\left( {\operatorname{Cos} {{10}^o} + i\operatorname{Sin} {{10}^o}} \right)
B. 3(Cos170o+iSin170o)3\left( {\operatorname{Cos} {{170}^o} + i\operatorname{Sin} {{170}^o}} \right)
C. 3(Cos100o+iSin100o)3\left( {\operatorname{Cos} {{100}^o} + i\operatorname{Sin} {{100}^o}} \right)
D. 3(Cos130o+iSin130o)3\left( {\operatorname{Cos} {{130}^o} + i\operatorname{Sin} {{130}^o}} \right)
E. 3(Cos150o+iSin150o)3\left( {\operatorname{Cos} {{150}^o} + i\operatorname{Sin} {{150}^o}} \right)

Explanation

Solution

de Moivre’s theorem is used to calculate the powers of the complex numbers.
As (Cosθ+iSinθ)n=Cosnθ+iSinnθ{\left( {\operatorname{Cos} \theta + i\operatorname{Sin} \theta } \right)^n} = \operatorname{Cos} n\theta + i\operatorname{Sin} n\theta.

Complete step by step answer:
The given complex number is,
y=27(Cos30o+iSin30o)y = 27\left( {\operatorname{Cos} {{30}^o} + i\operatorname{Sin} {{30}^o}} \right)
Taking the cube root of both the sides,

y13=2713(Cos30o+iSin30o)13 y13=3(Cos30o+360ok3+iSin30o+360ok3)......(1) \Rightarrow{y^{\dfrac{1}{3}}} = {27^{\dfrac{1}{3}}}{\left( {\operatorname{Cos} {{30}^o} + i\operatorname{Sin} {{30}^o}} \right)^{\dfrac{1}{3}}} \\\ \Rightarrow{y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} \dfrac{{{{30}^o} + {{360}^o}k}}{3} + i\operatorname{Sin} \dfrac{{{{30}^o} + {{360}^o}k}}{3}} \right)......(1) \\\

Put k=0k = 0 in equation (1),
y13=3(Cos30o+360o(0)3+iSin30o+360o(0)3) y13=3(Cos10o+iSin10o)  \Rightarrow{y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} \dfrac{{{{30}^o} + {{360}^o}\left( 0 \right)}}{3} + i\operatorname{Sin} \dfrac{{{{30}^o} + {{360}^o}\left( 0 \right)}}{3}} \right) \\\ {y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} {{10}^o} + i\operatorname{Sin} {{10}^o}} \right) \\\
Put k=1k = 1 in equation(1),
y13=3(Cos30o+360o(1)3+iSin30o+360o(1)3) y13=3(Cos130o+iSin130o)  \Rightarrow{y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} \dfrac{{{{30}^o} + {{360}^o}\left( 1 \right)}}{3} + i\operatorname{Sin} \dfrac{{{{30}^o} + {{360}^o}\left( 1 \right)}}{3}} \right) \\\ \Rightarrow{y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} {{130}^o} + i\operatorname{Sin} {{130}^o}} \right) \\\
Put k=2k = 2 in equation(1),
y13=3(Cos30o+360o(2)3+iSin30o+360o(2)3) y13=3(Cos250o+iSin250o)  \Rightarrow{y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} \dfrac{{{{30}^o} + {{360}^o}\left( 2 \right)}}{3} + i\operatorname{Sin} \dfrac{{{{30}^o} + {{360}^o}\left( 2 \right)}}{3}} \right) \\\ \Rightarrow{y^{\dfrac{1}{3}}} = 3\left( {\operatorname{Cos} {{250}^o} + i\operatorname{Sin} {{250}^o}} \right) \\\
Hence, the cube root of 27(Cos30o+iSin30o)27\left( {\operatorname{Cos} {{30}^o} + i\operatorname{Sin} {{30}^o}} \right) that lies in second quadrant is 3(Cos130o+iSin130o)3\left( {\operatorname{Cos} {{130}^o} + i\operatorname{Sin} {{130}^o}} \right)

Thus, the correct option is (D).

Note: A complex number is a number that can be expressed in the form of x+iyx + iy . where, xx are real part , represented on X-axis and iyiy is the imaginary part , represented on Y-axis on the Argand’s plane. The value of i2=1{i^2} = - 1 .
A complex number can also be expressed as eixe^{ix}.
Therefore, (eix)n=einx{\left( {{e^{ix}}} \right)^n} = {e^{inx}}
Where nn can be any positive, negative integer or it can be a rational number. The term with ‘i’ represents an imaginary part.