Solveeit Logo

Question

Question: Find the correct option of the coefficient of \[{x^2}\] in the expansion of the product \[\left( {2 ...

Find the correct option of the coefficient of x2{x^2} in the expansion of the product (2x2)((1+2x+3x2)6+(14x2)6)\left( {2 - {x^2}} \right) \cdot \left( {{{\left( {1 + 2x + 3{x^2}} \right)}^6} + {{\left( {1 - 4{x^2}} \right)}^6}} \right).
A. 106
B. 107
C. 155
D. 108

Explanation

Solution

First we will multiply the expression ((1+2x+3x2)6+(14x2)6)\left( {{{\left( {1 + 2x + 3{x^2}} \right)}^6} + {{\left( {1 - 4{x^2}} \right)}^6}} \right) with outer term (2x2)\left( {2 - {x^2}} \right) and using binomial expansion expand the terms and then separate the terms which are having the coefficient of x2{x^2}. Use the formal expression of the binomial theorem, (a+b)n=k=0nnCkankbk{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {{}^n{C_k}{a^{n - k}}{b^k}} to expand the value of the given expression.

Complete step by step solution:
First consider the formula which we will used to simplify,

(a+b)n=k=0nnCkankbk =nC0an+nC1an1b1+nC2an2b2+....  {\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {{}^n{C_k}{a^{n - k}}{b^k}} \\\ = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + .... \\\

First, we will expand the term (1+2x+3x2)6{\left( {1 + 2x + 3{x^2}} \right)^6} using the binomial formula written above.
We get,

(1+(2x+3x2))6=6C0(1)6+6C1(1)61(2x+3x2)1+6C2(1)62(2x+3x2)2+... =[1(1)+1(2x+3x2)6+15(4x2+9x4+12x3)]+....  {\left( {1 + \left( {2x + 3{x^2}} \right)} \right)^6} = {}^6{C_0}{\left( 1 \right)^6} + {}^6{C_1}{\left( 1 \right)^{6 - 1}}{\left( {2x + 3{x^2}} \right)^1} + {}^6{C_2}{\left( 1 \right)^{6 - 2}}{\left( {2x + 3{x^2}} \right)^2} + ... \\\ = \left[ {1\left( 1 \right) + 1\left( {2x + 3{x^2}} \right)6 + 15\left( {4{x^2} + 9{x^4} + 12{x^3}} \right)} \right] + .... \\\

Now, multiply the outer term (2x2)\left( {2 - {x^2}} \right) with the values obtained above.
Thus, we get,

(2x2)((1+(2x+3x2)))6=(2x2)[1(1)+1(2x+3x2)6+15(4x2+9x4+12x3)]+.... =(2x2)+(2x2)(2x+3x2)6+15(2x2)(4x2+9x4+12x3)+... =2x2+(4x+6x22x33x4)6+15(8x2+18x4+24x34x49x612x5)+  \left( {2 - {x^2}} \right){\left( {\left( {1 + \left( {2x + 3{x^2}} \right)} \right)} \right)^6} = \left( {2 - {x^2}} \right)\left[ {1\left( 1 \right) + 1\left( {2x + 3{x^2}} \right)6 + 15\left( {4{x^2} + 9{x^4} + 12{x^3}} \right)} \right] + .... \\\ = \left( {2 - {x^2}} \right) + \left( {2 - {x^2}} \right)\left( {2x + 3{x^2}} \right)6 + 15\left( {2 - {x^2}} \right)\left( {4{x^2} + 9{x^4} + 12{x^3}} \right) + ... \\\ = 2 - {x^2} + \left( {4x + 6{x^2} - 2{x^3} - 3{x^4}} \right)6 + 15\left( {8{x^2} + 18{x^4} + 24{x^3} - 4{x^4} - 9{x^6} - 12{x^5}} \right) + … \\\

Other higher terms in the expansion will contain terms with coefficient higher than x2{x^2}. So we’ll neglect those terms.
Now, we will consider the terms which are having x2{x^2}. Thus we get,
x2+36x2+120x2=155x2\Rightarrow - {x^2} + 36{x^2} + 120{x^2} = 155{x^2} -----(i) expression
Next, we will expand the term (14x2)6{\left( {1 - 4{x^2}} \right)^6} using the binomial formula
We get,

(14x2)6=6C0(1)6+6C1(1)61(4x2)1+6C2(1)62(4x2)2+ =[1+1(6)(4x2)+15(4x4)]+  {\left( {1 - 4{x^2}} \right)^6} = {}^6{C_0}{\left( 1 \right)^6} + {}^6{C_1}{\left( 1 \right)^{6 - 1}}{\left( { - 4{x^2}} \right)^1} + {}^6{C_2}{\left( 1 \right)^{6 - 2}}{\left( { - 4{x^2}} \right)^2} + …\\\ = \left[ {1 + 1\left( 6 \right)\left( { - 4{x^2}} \right) + 15\left( { - 4{x^4}} \right)} \right] + …\\\

Neglecting other higher terms.
Now, multiply the outer term (2x2)\left( {2 - {x^2}} \right) with the values obtained above.
Thus, we get,

(2x2)(14x2)6=(2x2)[124x2] =2x248x2+24x4 =249x2+24x4  \left( {2 - {x^2}} \right){\left( {1 - 4{x^2}} \right)^6} = \left( {2 - {x^2}} \right)\left[ {1 - 24{x^2}} \right] \\\ = 2 - {x^2} - 48{x^2} + 24{x^4} \\\ = 2 - 49{x^2} + 24{x^4} \\\

Now, we will consider the terms which are having x2{x^2}. Thus we get,
49x2\Rightarrow - 49{x^2} -------(ii) expression
Now, from the first expression we can see that the coefficient of x2{x^2} is 155 and from the second expression we have coefficient of x2{x^2} as 49 - 49
Thus, now, we will calculate the total of both the coefficients by adding their coefficients obtained above.
Hence, we get,
15549=106155 - 49 = 106
Thus, the coefficient of x2{x^2} is 106.
Thus, option A is correct.
Note: We have separated the terms in the beginning only by multiplying and then applying the binomial formula. Ignore those terms whose coefficient is not x2{x^2} and choose only those terms who is having the term x2{x^2}. We have expanded the value of nCr{}^n{C_r} as this nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} to evaluate the values of nCk{}^n{C_k}.