Solveeit Logo

Question

Question: Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, -3). ...

Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, -3).
A. P(2,5/3)P\left( -2,{}^{-5}/{}_{-3} \right)
B. P(2,5/3)P\left( 2,{}^{-5}/{}_{3} \right)
C. Q(0,7/3)Q\left( 0,{}^{-7}/{}_{3} \right)
D. Q(0,7/3)Q\left( 0,{}^{7}/{}_{3} \right)

Explanation

Solution

Hint: As it is the point of trisection, it divides the line into 3 parts, i.e. two points in AB line are P and Q. Find the ratio in which P and Q divides AB and use the trisection formula to get points P and Q.

Complete step-by-step answer:

Let the given points be A (4, -1) and B (-2, 3). Let P and Q be the two points in AB such that,
AP = PQ = QB.

It is said that it’s in trisection, which means that the 2 points P and Q divide AB into 3 equal parts.
Let us consider AP = PQ = QB = m.
Point P divides AP and PB in the ratio, AP = m.
PB = PQ + QB = m + m = 2m.
AP:PBm:2m=1:2.\therefore AP:PB\Rightarrow m:2m=1:2.
Thus point P divides AP and PB in the ratio 1:2, i.e. P divides AB in the ratio 1:2.
Now let us find the value of P.
Let us take P(x, y)

The ratio is 1:2, thus m1:m2{{m}_{1}}:{{m}_{2}}
m1=1,m2=2{{m}_{1}}=1,{{m}_{2}}=2.
The formula for finding the value of x and y with ratio is,
x=m1x2+m2x1m1+m1x=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{1}}} and y=m1y2+m2y1m1+m2.........(1)y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}.........(1)
Here (x1,y1)=(4,1)\left( {{x}_{1}},{{y}_{1}} \right)=(4,-1) and (x2,y2)=(2,3)\left( {{x}_{2}},{{y}_{2}} \right)=(-2,-3).
Thus let us substitute these values and get x and y.
x=m1x2+m2x1m1+m1=(1×2)+(2×4)1+2=2+83=63=2.x=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{1}}}=\dfrac{\left( 1\times -2 \right)+\left( 2\times 4 \right)}{1+2}=\dfrac{-2+8}{3}=\dfrac{6}{3}=2.
y=m1y2+m2y1m1+m2=(1×3)+(2×1)1+2=323=53.y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}=\dfrac{\left( 1\times -3 \right)+\left( 2\times -1 \right)}{1+2}=\dfrac{-3-2}{3}=\dfrac{-5}{3}.
Thus we got x = 2 and y = 53\dfrac{-5}{3}.
Therefore we got point P(2,5/3)P\left( 2,{}^{-5}/{}_{3} \right).
Similarly point Q divides AB in the ratio of AQ and QB.

AQ = AP + PQ = m + m = 2m
and QB = m.
AQ:QB = 2m:m = 2:1.
So point Q divides AB in the ratio 2:1.
Now let us find the coordinates of Q.
Let us take Q (x, y), 2:1=m1+m22:1={{m}_{1}}+{{m}_{2}}.
m1=2{{m}_{1}}=2 and m2=1{{m}_{2}}=1.
Let us put values in the equation (1) to get values of x and y.
x=m1x2+m2x1m1+m1=(2×2)+(1×4)2+1=4+43=03=0.x=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{1}}}=\dfrac{\left( 2\times -2 \right)+\left( 1\times 4 \right)}{2+1}=\dfrac{-4+4}{3}=\dfrac{0}{3}=0.
y=m1y2+m2y1m1+m2=(2×3)+(1×1)2+1=613=73.y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}=\dfrac{\left( 2\times -3 \right)+\left( 1\times -1 \right)}{2+1}=\dfrac{-6-1}{3}=\dfrac{-7}{3}.
Thus we got x = 0and y = 73\dfrac{-7}{3}.
Thus we got point Q(0,7/3)Q\left( 0,{}^{-7}/{}_{3} \right).
Thus we got the coordinates of points of trisection as P(2,5/3)P\left( 2,{}^{-5}/{}_{3} \right) and Q(0,7/3)Q\left( 0,{}^{-7}/{}_{3} \right).
Option B and C are correct.

Note: If points P and Q which lie on the line segment AB divides it into 3 equal parts that means, if AP = PQ = QB, then the points P and Q are called Points of Trisection of AB. You have to remember that P divides AB in the ratio 1:2 and Q divides AB in the ratio 2:1.