Solveeit Logo

Question

Question: Find the coordinates of the point, where the line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\] i...

Find the coordinates of the point, where the line x23=y+14=z22\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2} intersects the plane xy+z5=0x-y+z-5=0. Also find the angle between the line and the plane.

Explanation

Solution

We start solving this problem by equating the given equation of the line to some constant λ\lambda . Then we find x,yx,y and zz in terms of λ\lambda . Then we substitute these terms in the equation of plane as they intersect, to obtain the value of λ\lambda . Automatically we get the values of x,yx,y, and zz. Hence, we get the coordinates of the point of intersection of the given line and plane. Then we get the angle between the given line and plane by using the formula sinθ=a.ba.b\sin \theta =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|.\left| \overrightarrow{b} \right|}.

Complete step-by-step solution:
Let us consider the given equation of line x23=y+14=z22\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}.
Now, we equate the above equation to some constant λ\lambda
So, x23=y+14=z22=λ\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}=\lambda
By the above equation, we get
x2=3λ x=3λ+2..............(1) y+1=4λ y=4λ1..............(2) z2=2λ z=2λ+2..............(3) \begin{aligned} & x-2=3\lambda \\\ & \Rightarrow x=3\lambda +2..............\left( 1 \right) \\\ & y+1=4\lambda \\\ & \Rightarrow y=4\lambda -1..............\left( 2 \right) \\\ & z-2=2\lambda \\\ & \Rightarrow z=2\lambda +2..............\left( 3 \right) \\\ \end{aligned}
We were given that the equation of plane is xy+z5=0x-y+z-5=0.
By substituting the equations (1), (2) and (3) in the above plane equation, we get
(3λ+2)(4λ1)+(2λ+2)5=0 3λ+24λ+1+2λ+25=0 λ+55=0 λ=0 \begin{aligned} & \left( 3\lambda +2 \right)-\left( 4\lambda -1 \right)+\left( 2\lambda +2 \right)-5=0 \\\ & \Rightarrow 3\lambda +2-4\lambda +1+2\lambda +2-5=0 \\\ & \Rightarrow \lambda +5-5=0 \\\ & \Rightarrow \lambda =0 \\\ \end{aligned}
Now, we substitute the value of λ\lambda in equation (1), we get
x=3λ+2 x=3(0)+2 x=0+2 x=2 \begin{aligned} & x=3\lambda +2 \\\ & \Rightarrow x=3\left( 0 \right)+2 \\\ & \Rightarrow x=0+2 \\\ & \Rightarrow x=2 \\\ \end{aligned}
By substituting the value of λ\lambda in equation (2), we get
y+1=4λ y+1=4(0) y+1=0 y=1 \begin{aligned} & y+1=4\lambda \\\ & \Rightarrow y+1=4\left( 0 \right) \\\ & \Rightarrow y+1=0 \\\ & \Rightarrow y=-1 \\\ \end{aligned}
We substitute the value of λ\lambda in equation (3), we get
z=2λ+2 z=2(0)+2 z=0+2 z=2 \begin{aligned} & z=2\lambda +2 \\\ & \Rightarrow z=2\left( 0 \right)+2 \\\ & \Rightarrow z=0+2 \\\ & \Rightarrow z=2 \\\ \end{aligned}
So, we get x=2,y=1,z=2x=2,y=-1,z=2.
Hence, the coordinates of the point of intersection of the given line and plane are (2,1,2)\left( 2,-1,2 \right).
Now, let us find the angle between the given line and the plane.
Let us consider the given line x23=y+14=z22\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}.
We can say that the line is parallel to the vector 3i^+4j^+2k^3\hat{i}+4\hat{j}+2\hat{k}.
Now, let us consider the given equation of the plane xy+z5=0x-y+z-5=0.
We can say that the plane is normal to the vector i^j^+k^\hat{i}-\hat{j}+\hat{k}.
Let us consider the formula for the angle between the line parallel to the vector a\overrightarrow{a} and the plane whose normal is b\overrightarrow{b}, is sinθ=a.ba.b\sin \theta =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|.\left| \overrightarrow{b} \right|}
By using the above formula, we get
sinθ=(3i^+4j^+2k^).(i^j^+k^)3i^+4j^+2k^.i^j^+k^\sin \theta =\dfrac{\left( 3\hat{i}+4\hat{j}+2\hat{k} \right).\left( \hat{i}-\hat{j}+\hat{k} \right)}{\left| 3\hat{i}+4\hat{j}+2\hat{k} \right|.\left| \hat{i}-\hat{j}+\hat{k} \right|}
Let us consider the formula, (a1i^+b1j^+c1k^).(a2i^+b2j^+c2k^)=a1a2+b1b2+c1c2\left( {{a}_{1}}\hat{i}+{{b}_{1}}\hat{j}+{{c}_{1}}\hat{k} \right).\left( {{a}_{2}}\hat{i}+{{b}_{2}}\hat{j}+{{c}_{2}}\hat{k} \right)={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}} and ai^+bj^+ck^=a2+b2+c2\left| a\hat{i}+b\hat{j}+c\hat{k} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.
Using the above formulae, we get
sinθ=(3)(1)+(4)(1)+(2)(1)(32+42+22)(12+(1)2+12) sinθ=34+2(29)(3) sinθ=187 θ=sin1(187) \begin{aligned} & \sin \theta =\dfrac{\left( 3 \right)\left( 1 \right)+\left( 4 \right)\left( -1 \right)+\left( 2 \right)\left( 1 \right)}{\left( \sqrt{{{3}^{2}}+{{4}^{2}}+{{2}^{2}}} \right)\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{1}^{2}}} \right)} \\\ & \Rightarrow \sin \theta =\dfrac{3-4+2}{\left( \sqrt{29} \right)\left( \sqrt{3} \right)} \\\ & \Rightarrow \sin \theta =\dfrac{1}{\sqrt{87}} \\\ & \Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{87}} \right) \\\ \end{aligned}
Therefore, the angle between the given line and plane is sin1(187){{\sin }^{-1}}\left( \dfrac{1}{\sqrt{87}} \right).

Note: One may make a mistake by considering 2i+j2k-2\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k} as vector parallel to the line x23=y+14=z22\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2} instead of taking 3i+4j+2k3\overrightarrow{i}+4\overrightarrow{j}+2\overrightarrow{k}. But it is the point on the line not a vector parallel to it, 3i+4j+2k3\overrightarrow{i}+4\overrightarrow{j}+2\overrightarrow{k} is the vector parallel to given line.