Solveeit Logo

Question

Question: Find the coordinates of the point of trisection of the line segment joining the points \[A\left( {7,...

Find the coordinates of the point of trisection of the line segment joining the points A(7,2)A\left( {7, - 2} \right) and B(1,5)B\left( {1, - 5} \right)

Explanation

Solution

Here, we will assume two points such that they divide the given line segment in their respective ratios according to their position. We will use Section formula, to find the required coordinates of the point of trisection. Substituting the values of the given coordinates and the ratio in which the point divides the line segment in the section formula, we will get the required ratio.

Formula Used:
Section Formula: Coordinates of pointP=mx2+nx1m+n,my2+ny1m+nP = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}, where PP is a point dividing the line segment.

Complete step-by-step answer:
The given coordinates of the end points of the line segment ABAB are: A(7,2)A\left( {7, - 2} \right) and B(1,5)B\left( {1, - 5} \right)
Now, in order to find the point of trisection, we have to divide this line segment into three parts.
Hence, let us assume two points PP and QQ on the line segment ABAB such that:
Coordinates of point P=(x,y)P = \left( {x,y} \right) and Coordinates of point Q=(x,y)Q = \left( {x\prime ,y\prime } \right)
Hence, this line segment can be shown as:

Now, point PP divides the line segment ABAB in the ratio 1:21:2 internally.
Also, mm and nn are the ratios in which the points have divided the line segment.
Now, substituting (x1,y1)=(7,2)\left( {{x_1},{y_1}} \right) = \left( {7, - 2} \right) , (x2,y2)=(1,5)\left( {{x_2},{y_2}} \right) = \left( {1, - 5} \right) and the ratio m:n=1:2m:n = 1:2 in the formula Coordinates of Point P=mx2+nx1m+n,my2+ny1m+nP = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}, we get
Coordinates of point P=(1)(1)+2(7)1+2,(1)(5)+2(2)1+2P = \dfrac{{\left( 1 \right)\left( 1 \right) + 2\left( 7 \right)}}{{1 + 2}},\dfrac{{\left( 1 \right)\left( { - 5} \right) + 2\left( { - 2} \right)}}{{1 + 2}}
Substituting coordinates of point P=(x,y)P = \left( {x,y} \right) in the above equation, we get
(x,y)=1+143,543\Rightarrow \left( {x,y} \right) = \dfrac{{1 + 14}}{3},\dfrac{{ - 5 - 4}}{3}
Adding the terms in the numerator, we get
(x,y)=153,93\Rightarrow \left( {x,y} \right) = \dfrac{{15}}{3},\dfrac{{ - 9}}{3}
Dividing the numerator by 3, we get
Hence, we get,
(x,y)=(5,3)\Rightarrow \left( {x,y} \right) = \left( {5, - 3} \right)
Therefore, the coordinates of point PP are (5,3)\left( {5, - 3} \right)
Now, similarly, point QQ divides the line segment ABAB in the ratio 2:12:1 internally.
Now, substituting (x1,y1)=(7,2)\left( {{x_1},{y_1}} \right) = \left( {7, - 2} \right) , (x2,y2)=(1,5)\left( {{x_2},{y_2}} \right) = \left( {1, - 5} \right) and the ratio m:n=2:1m:n = 2:1 in the formula Coordinates of Point Q=mx2+nx1m+n,my2+ny1m+nQ = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}, we get
Coordinates of point Q=(2)(1)+1(7)2+1,(2)(5)+1(2)2+1Q = \dfrac{{\left( 2 \right)\left( 1 \right) + 1\left( 7 \right)}}{{2 + 1}},\dfrac{{\left( 2 \right)\left( { - 5} \right) + 1\left( { - 2} \right)}}{{2 + 1}}
Substituting coordinates of point Q=(x,y)Q = \left( {x\prime ,y\prime } \right) in the above equation, we get
(x,y)=2+73,1023\Rightarrow \left( {x\prime ,y\prime } \right) = \dfrac{{2 + 7}}{3},\dfrac{{ - 10 - 2}}{3}
Adding the terms in the numerator, we get
(x,y)=93,123\Rightarrow \left( {x\prime ,y\prime } \right) = \dfrac{9}{3},\dfrac{{ - 12}}{3}
Dividing the numerator by 3, we get
(x,y)=(3,4)\Rightarrow \left( {x\prime ,y\prime } \right) = \left( {3, - 4} \right)
Therefore, the coordinates of point QQ are (3,4)\left( {3, - 4} \right)
Hence, the coordinates of the point of trisection of the line segment joining the points A(7,2)A\left( {7, - 2} \right) and B(1,5)B\left( {1, - 5} \right) are (5,3)\left( {5, - 3} \right) and (3,4)\left( {3, - 4} \right).
Hence, this is the required answer.

Note: In this question, the end points are given with their respective coordinates. We should take care while solving the question, that we substituted the correct coordinates in the correct place. For example, in the section formula, if we substitute (x1,y1)\left( {{x_1},{y_1}} \right) in such a way that the xx coordinate is of point AA and the yy coordinate is of point BB. Then, our answer will be wrong. Also, while substituting the ratio in case of point PPand QQ respectively, we should know that 1:21:2 is different from 2:12:1, hence, we should substitute the ratio carefully and accordingly.