Solveeit Logo

Question

Question: Find the coordinates of the point in which \(2y-3x+7=0\) meets the line joining the two points \(\le...

Find the coordinates of the point in which 2y3x+7=02y-3x+7=0 meets the line joining the two points (6,2)\left( 6,-2 \right)and (8,7)\left( -8,7 \right). Find also the angle between them.

Explanation

Solution

Hint: Here, we have to first find the equation of the line joining given points and then solve the 2 equations in two variables simultaneously to find the point of intersection.

Complete step-by-step answer:
Equation of the line joining (6,2)\left( 6,-2 \right)and (8,7)\left( -8,7 \right)is given by
y(2)=7(2)86=(x6)y-\left( -2 \right)=\dfrac{-7-\left( -2 \right)}{-8-6}=\left( x-6 \right)
y+2=914(x6)y+2=\dfrac{-9}{14}\left( x-6 \right)
14y+28=9x+5414y+28=-9x+54
14y+9x=26 ......... 114y+9x=26\text{ }.........\text{ 1}
Slope of line will be y=914x+2614y=\dfrac{-9}{14}x+\dfrac{26}{14}
Comparing with y=mx+cy=mx+cwe get,
m=914m=\dfrac{-9}{14}
m1=slope=914{{m}_{1}}=\text{slope}=\dfrac{-9}{14}
Given line 2y3x+7=0 y=32x722y-3x+7=0\text{ }y=\dfrac{3}{2}x-\dfrac{7}{2}
Slope m2=32{{m}_{2}}=\dfrac{3}{2}
3x=2y+7 ......... 2\Rightarrow 3x=2y+7\text{ }.........\text{ 2}
.Substituting 2 into 1 we get,
14y+3(2y+7)=2614y+3\left( 2y+7 \right)=26
14y+6y+21=26\Rightarrow 14y+6y+21=26
20y=5\Rightarrow 20y=5
y=14\Rightarrow y=\dfrac{1}{4} Now substituting value of x in 1 we get,
3x=2(14)+73x=2\left( \dfrac{1}{4} \right)+7
3x=152\Rightarrow 3x=\dfrac{15}{2}
x=52\Rightarrow x=\dfrac{5}{2}
So the point of intersection is (52,14)\left( \dfrac{5}{2},\dfrac{1}{4} \right)
Angle between the two lines i.e. tanθ=m1m21+m1m2\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|
Here m1=914 m2=32{{m}_{1}}=\dfrac{-9}{14}\text{ }{{m}_{2}}=\dfrac{3}{2}
tanθ914321+(914)(32)\tan \theta \left| \dfrac{\dfrac{-9}{14}-\dfrac{3}{2}}{1+\left( \dfrac{-9}{14} \right)\left( \dfrac{3}{2} \right)} \right|
tanθ18+(42)28282728=6028128\tan \theta \left| \dfrac{\dfrac{-18+\left( -42 \right)}{28}}{\dfrac{28-27}{28}} \right|=\left| \dfrac{\dfrac{-60}{28}}{\dfrac{1}{28}} \right|
tanθ=60\Rightarrow \tan \theta =60
θ=tan160\theta ={{\tan }^{-1}}60

Note: The equation of line joining two points (x1,y1) !!&!! (x2,y2)\left( {{x}_{1}},{{y}_{1}} \right)\text{ }\\!\\!\And\\!\\!\text{ }\left( {{x}_{2}},{{y}_{2}} \right)is given by
yy1=(y2y1x2x1)(x2x1)y-{{y}_{1}}=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( {{x}_{2}}-{{x}_{1}} \right)