Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

Find the coordinates of the foot of perpendicular from the point (1,3)(–1, 3) to the line 3x4y16=0.3x – 4y – 16 = 0.

Answer

Let (a, b) be the coordinates of the foot of the perpendicular from the point (-1, 3) to the line 3x4y\-16=0.3x - 4y \- 16 = 0.

3x–4y–16=0.

Slope of the line joining (-1, 3) and (a, b), m1=b3a+1m_1=\frac{b-3}{a+1}

Slope of the line 3x\-4y\-16=03x \- 4y \- 16 = 0 or y=34x4 y=\frac{3}{4}x-4 , m2=34m_2 =\frac{ 3}{4}

Since these two lines are perpendicular, m1m2=1m_1m_2 = -1

(b3)(a+1)×(34)=1∴\frac{(b-3)}{(a+1)} \times (\frac{3}{4}) = -1

(3b9)(4a+4)=1⇒\frac{\left(3b-9\right)}{\left(4a+4\right)} = -1

3b9=4a4⇒3b–9=-4a – 4
4a+3b=5.(1)⇒4a+3b=5 …….(1)
Point (a,b)(a, b) lies on line 3x\-4y=16.3x \- 4y = 16.
3a\-4b=16(2)∴3a \- 4b = 16 … (2)
On solving equations (1) and (2), we obtain

a=6825a = \frac{68}{25} and b=4925b = \frac{-49}{25}

Thus, the required coordinates of the foot of the perpendicular are(6825,4925) \left(\frac{68}{25},\frac{ -49}{25}\right)