Solveeit Logo

Question

Mathematics Question on Hyperbola

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola 49y216x2=78449y^ 2 - 16x ^2 = 784

Answer

The given equation is 49y216x2=78449y^ 2 - 16x ^2 = 784
It can be written as 49y216x2=78449y^ 2 - 16x^ 2 = 784

or, y216x249=1\frac{y^2}{16} –\frac{ x^2}{49} = 1

or, y242x272=1.....(1)\frac{y^2}{42} – \frac{x^2}{72} = 1 .....(1)

On comparing equation (1) with the standard equation of hyperbola i.e., y2a2x2b2=1\frac{y^2}{a^2} –\frac{ x^2}{b^2} = 1, we obtain a = 4 and b = 7

We know that a2+b2=c2.a^ 2 + b^ 2 = c^ 2 .

c2=365+4∴ c^2 = \frac{36}{5} + 4

c2=16+49c^2 = 16 + 49

c2=65c^2 = 65

c=65⇒ c = \sqrt{65}

Therefore,
The coordinates of the foci are (0, 65\sqrt{65}) and (0, –65\sqrt{65}).
The coordinates of the vertices are (0, 4) and (0, -4).

Eccentricity, e=ca=654e =\frac{ c}{a} = \frac{\sqrt{65}}{4}

Length of latus rectum=2b2a=(2×72)4=(2×49)4=492 =\frac{ 2b^2}{a} = \frac{(2 \times 72)}{4} = \frac{(2\times49)}{4} = \frac{49}{2}