Solveeit Logo

Question

Mathematics Question on Hyperbola

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola 5y29x2=365y^ 2 - 9x^ 2 = 36

Answer

The given equation is 5y29x2=365y^ 2 - 9x ^2 = 36

5y2369x236=3636⇒ \frac{5y^2}{36} –\frac{ 9x^2}{36} = \frac{36}{36}

y2(365)x24=1.......(1)\frac{y^2}{(\frac{36}{5})} – \frac{x^2}{4} = 1.......(1)

On comparing equation (1) with the standard equation of hyperbola i.e., y2a2x2b2=1\frac{y^2}{a^2} –\frac{ x^2}{b^2} = 1, we obtain a=65a= \frac{6}{\sqrt5} and b = 2

We know that a2+b2=c2.a ^2 + b^ 2 = c^ 2 .

c2=365+4∴ c^2 = \frac{36}{5} + 4

c2=565c^2 = \frac{56}{5}

c=(565)c = \sqrt{(\frac{56}{5})}

=2145= \frac{2\sqrt{14}}{\sqrt{5}}

Therefore,
The coordinates of the foci are (0, 2145\frac{2\sqrt{14}}{\sqrt{5}}) and (0, – 2145\frac{2\sqrt{14}}{\sqrt{5}}).

The coordinates of the vertices are (0, 65\frac{6}{\sqrt5}) and (0, -65\frac{6}{\sqrt5}).

Eccentricity, e=ca=(2145)(65)=143e = \frac{c}{a} =\frac{ (\frac{2\sqrt{14}}{\sqrt{5}}) }{ (\frac{6}{\sqrt5}) }= \frac{\sqrt{14}}{3}

Length of latus rectum = 2b2a=(2×22)65=(2×4)65=453\frac{2b^2}{a} =\frac{(2 \times 22)}{\frac{6}{\sqrt{5}}} = \frac{(2\times4)}{\frac{6}{\sqrt{5 }}}= \frac{4\sqrt5}{3}