Solveeit Logo

Question

Mathematics Question on Hyperbola

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola 9y24x2=379y^2-4x^2=37

Answer

The given equation is 9y24x2=36.9y^2 - 4x^2 = 36.
or y24x29=1\dfrac{y^2}{4} – \dfrac{x^2}{9} = 1

or y222x232=1.......(1)\dfrac{y^2}{2^2} – \dfrac{x^2}{3^2} = 1.......(1)
On comparing equation (1) with the standard equation of hyperbola i.e., y2a2x2b2=1\dfrac{y^2}{a^2} – \dfrac{x^2}{b^2} = 1 we obtain a=2a = 2 and b=3b = 3. $$
We know that a2+b2=c2.a^2 + b^2 = c^2 .
c2=4+9∴ c^2 = 4 + 9
c2=13c^2 = 13
c=13.c = √13.

Therefore,
The coordinates of the foci are (0,13)(0, √13) and (0,–√13).(0, –√13).
The coordinates of the vertices are (0,2)(0, 2) and (0,2).(0, – 2).
Eccentricity, e=ca=132e = \dfrac{c}{a} = \dfrac{√13}{2}
Length of the latus rectum =2b2a=(2×32)2= \dfrac{2b^2}{a} = \dfrac{(2 × 3^2)}{2}

=(2×9)2=182=9= \dfrac{(2×9)}{2} = \dfrac{18}{2} = 9