Solveeit Logo

Question

Question: Find the condition of \(f\left( t \right)\) at \(t = 0\) where, \(f(t) = \dfrac{{\sin t}}{t}\) a) ...

Find the condition of f(t)f\left( t \right) at t=0t = 0 where, f(t)=sinttf(t) = \dfrac{{\sin t}}{t}
a) A minimum
b) A discontinuity
c) A point of inflexion
d) A maximum

Explanation

Solution

Hint: In this question you need to check the continuity of a function by finding out (LHL)(LHL) and (RHL)\left( {RHL} \right), to check maximum and minimum, differentiate the function twice. Is the resultant value being greater than zero then the given function is minimum else it is maximum?

Complete step-by-step answer:
In this question it is given that,
f(t)=sinttf(t) = \dfrac{{\sin t}}{t}
Now at t=0t = 0 we will check continuity of a function f(t)f\left( t \right) by finding out the left hand limit (LHL)(LHL) and right hand limit(RHL)\left( {RHL} \right).
First, let us find out (LHL)(LHL) whose formula when t=0t = 0 is,
LHL=f(0h)LHL = f\left( {0 - h} \right)
Now replace ‘tt’ by (0h)\left( {0 - h} \right) in equation (1) with limh0\mathop {\lim }\limits_{h \to 0} , we get,
LHL=limh0sin(0h)(0h)\Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (0 - h)}}{{(0 - h)}}
On simplification,
LHL=limh0sin(h)(h)\Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin ( - h)}}{{( - h)}}
We know that, sin(h)=sin(h)\sin ( - h) = - \sin (h)
So above equation becomes,
LHL=limh0sinhh\Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \sinh }}{{ - h}}
On simplification we get,
LHL=limh0sinhh\Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h}
We know that, limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
Thus,
LHL=1\Rightarrow LHL = 1
Now, for (RHL)\left( {RHL} \right) we use below formula at t=0t = 0
RHL=f(0+h)\Rightarrow RHL = f(0 + h)
Using equation (1) replace ‘t’ by (0+h)\left( {0 + h} \right) and by adding limh0\mathop {\lim }\limits_{h \to 0} we get,
RHL=limh0sin(0+h)h\Rightarrow RHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (0 + h)}}{h}
On simplification we get,
RHL=limh0sinhh\Rightarrow RHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h}
From equation (2) we get
RHL=1\Rightarrow RHL = 1
We will now find out f(0)f\left( 0 \right), using equation (2)
f(0)=1\Rightarrow f(0) = 1
Thus,
LHL=RHL=f(0)\Rightarrow LHL = RHL = f(0)
If the above condition is satisfied, then we can conclude that the given function is continuous at t=0t = 0.
Now, we will check minimum or maximum at a function,
Differentiating f(t)f\left( t \right) using product rule,
ddx(u,v)=udvdx+vdudx\dfrac{d}{{dx}}(u,v) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}
We get,
f(t)=1tcost1t2sint\Rightarrow f'(t) = \dfrac{1}{t}\cos t - \dfrac{1}{{{t^2}}}\sin t
Now, again differentiate (3) with respect to ‘tt’ using product rule. We get,
f(t)=1tsint1t2cost1t2cost+2t3sint\Rightarrow f''(t) = - \dfrac{1}{t}\sin t - \dfrac{1}{{{t^2}}}\cos t - - \dfrac{1}{{{t^2}}}\cos t + \dfrac{2}{{{t^3}}}\sin t
On simplification we get,
f(t)=sintt2costt2+2sintt3\Rightarrow f''(t) = - \dfrac{{\sin t}}{t} - \dfrac{{2\cos t}}{{{t^2}}} + \dfrac{{2\sin t}}{{{t^3}}}
f(t)=sintt2(tcostsintt3)\Rightarrow f''(t) = - \dfrac{{\sin t}}{t} - 2\left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)
For maximum or minimum value of f(t)f\left( t \right), put f(t)=0f'\left( t \right) = 0.
costtsintt2=0\Rightarrow \dfrac{{\cos t}}{t} - \dfrac{{\sin t}}{{{t^2}}} = 0
On simplification we get,
tcostsintt2=0\Rightarrow \dfrac{{t\cos t - \sin t}}{{{t^2}}} = 0
tcostsint=0\Rightarrow t\cos t - \sin t = 0
tcost=sint\Rightarrow t\cos t = \sin t
Dividing (tcost)\left( {t\cos t} \right) on both sides,
1=sinttcost\Rightarrow 1 = \dfrac{{\sin t}}{{t\cos t}}
We know that, tant=sintcost\tan t = \dfrac{{\sin t}}{{\cos t}}
Thus equation becomes,
tantt=1\Rightarrow \dfrac{{\tan t}}{t} = 1
Now, we will find out limt0f(t)\mathop {\lim }\limits_{t \to 0} f''(t),
limt0f(t)=[limt0(sintt)2limt0(tcostsintt3)]\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = \left[ { - \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\sin t}}{t}} \right) - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)} \right]
From equation (2) the above equation can be simplified.
limt0f(t)=12limt0(tcostsintt3)\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)
When we substitute in place of ‘tt’ as ‘0’ we get (00)\left( {\dfrac{0}{0}} \right) form. Thus, we need to apply L’Hospital rule i.e., differentiating both numerator and denominator as a separate function we get,
limt0f(t)=12limt0(costtsintcost3t2)\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\cos t - t\sin t - \cos t}}{{3{t^2}}}} \right)
On simplification we get,
limt0f(t)=12limt0(tsint3t2)\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{ - t\sin t}}{{3{t^2}}}} \right)
limt0f(t)=1+23limt0(sintt)\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 + \dfrac{2}{3}\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\sin t}}{t}} \right)
Using equation (2) we get,
limt0f(t)=1+23×1\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 + \dfrac{2}{3} \times 1
limt0f(t)=13<0\Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - \dfrac{1}{3} < 0
Since 13 - \dfrac{1}{3} is less than zero, we can conclude that the given function f(t)f\left( t \right) is maximum at t=0t = 0.
Hence, option (d) is the correct answer.

Note: In this type of question you should know how to differentiate the given function and condition to check maximum and minimum.