Solveeit Logo

Question

Question: Find the condition of collinearity of the points \(\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \r...

Find the condition of collinearity of the points (acosϕ1,bsinϕ1),(acosϕ2,bsinϕ2),(acosϕ3,bsinϕ3)\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right),\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right) $$$$

Explanation

Solution

We denote the three points as A(acosϕ1,bsinϕ1),B(acosϕ2,bsinϕ2)A\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),B\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right) and C(acosϕ3,bsinϕ3)C\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right). We denote the slopes of AB, BC, CA as m1,m2,m3{{m}_{1}},{{m}_{2}},{{m}_{3}}. We use the fact that three points will lie on a line when the all the slopes of lines joining any two point on the main line will be equal, We solve m1=m2=m3{{m}_{1}}={{m}_{2}}={{m}_{3}} to get the condition of collinearity. $$$$

Complete step by step answer:
Let us denote the three points as A(acosϕ1,bsinϕ1),B(acosϕ2,bsinϕ2)A\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),B\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right) and C(acosϕ3,bsinϕ3)C\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right). If they are collinear then the three points A,B,CA,B,C will lie in the same line which means the slope of the line which contains A,B,CA,B,C will be equal to the slope of AB,BC,ACAB,BC,AC.$$$$
We know that the slope of line joining two points (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)is given by
m=y2y1x2x1m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}
Let us denote the slope of AB as m1{{m}_{1}}, slope of BC as m2{{m}_{2}}and slope of CA m3{{m}_{3}}. We have,
m1=b(sinϕ2sinϕ1)a(cosϕ2cosϕ1)=bcos(ϕ1+ϕ22)sin(ϕ1ϕ22)asin(ϕ1+ϕ22)sin(ϕ1ϕ22)=bacot(ϕ1+ϕ22){{m}_{1}}=\dfrac{b\left( \sin {{\phi }_{2}}-\sin {{\phi }_{1}} \right)}{a\left( \cos {{\phi }_{2}}-\cos {{\phi }_{1}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)
We can similarly find the slopes of BC and CA as

& {{m}_{2}}=\dfrac{b\left( \sin {{\phi }_{2}}-\sin {{\phi }_{3}} \right)}{a\left( \cos {{\phi }_{2}}-\cos {{\phi }_{3}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{2}}-{{\phi }_{3}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{2}}-{{\phi }_{3}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right) \\\ & {{m}_{3}}=\dfrac{b\left( \sin {{\phi }_{1}}-\sin {{\phi }_{3}} \right)}{a\left( \cos {{\phi }_{1}}-\cos {{\phi }_{3}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{3}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{3}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right) \\\ \end{aligned}$$ We have equality of slopes from the condition of collinearity which is ${{m}_{1}}={{m}_{2}}={{m}_{3}}$. We take ${{m}_{1}}={{m}_{2}}$ and use the relation between tangent and cotangent of an angle to have , $$\begin{aligned} & \dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right) \\\ & \Rightarrow \tan \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)=\tan \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\left( \tan \theta =\dfrac{1}{\cot \theta } \right) \\\ & \Rightarrow {{\phi }_{1}}+{{\phi }_{2}}={{\phi }_{2}}+{{\phi }_{3}} \\\ & \Rightarrow {{\phi }_{1}}={{\phi }_{3}} \\\ \end{aligned}$$ We can similarly take ${{m}_{2}}={{m}_{3}}$ to have $$\begin{aligned} & \dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right) \\\ & \Rightarrow \tan \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)=\tan \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\left( \tan \theta =\dfrac{1}{\cot \theta } \right) \\\ & \Rightarrow {{\phi }_{2}}+{{\phi }_{3}}={{\phi }_{1}}+{{\phi }_{3}} \\\ & \Rightarrow {{\phi }_{2}}={{\phi }_{1}} \\\ \end{aligned}$$ So the condition of collinearity is ${{\phi }_{1}}={{\phi }_{2}}={{\phi }_{3}}$. If we take ${{\phi }_{1}}={{\phi }_{2}}={{\phi }_{3}}=\phi $ the coordinates will be $A\left( a\cos \phi ,b\sin \phi \right),B\left( a\cos \phi ,b\sin \phi \right),C \left( a\cos \phi ,b\sin \phi \right)$.So they are identical.$$$$ **Note:** We note that all the solutions of the equation $\tan x=\tan a$ are $x=n\pi +a$ where $n$ is an integer, we have rejected the rest of the solution to find the required condition. We note that the given points are in the form of $\left( a\cos t,b\sin t \right)$ with $t$ as a parameter is general coordinate of a point lying on an ellipse whose semi-major axis has length $a$ and semi-minor axis has length $b$ . We can alternatively find the co-linearity condition by equating the area of a triangle with three points $\left( {{x}_{1}},{{y}_{2}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ to zero which means $A=\dfrac{1}{2}\left( {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right)=0$