Solveeit Logo

Question

Question: Find the coefficient of \({{x}^{n}}\) term in the binomial expansion of \({{\left( 1+x \right)}^{-2}...

Find the coefficient of xn{{x}^{n}} term in the binomial expansion of (1+x)2{{\left( 1+x \right)}^{-2}}?
(a) 2n2!\dfrac{{{2}^{n}}}{2!}
(b) n+1
(c) n
(d) 2n

Explanation

Solution

We start solving the by recalling the binomial expansion for the negative exponents as (1+x)a=1+(a)1x+(a)(a1)2×1x2+(a)(a1)(a2)3×2×1x3+...+(a)(a1)(a2)...(ak+1)k×...×3×2×1xk+...{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty . We then find the general term of this expansion and the coefficient of it. We then substitute a=2a=2 and k=nk=n to find the coefficient of xn{{x}^{n}} in the binomial expansion of (1+x)2{{\left( 1+x \right)}^{-2}}. We then check what will be the results if n is odd and n is even to get the required result.

Complete step by step answer:
According to the problem, we need to find the coefficient of xn{{x}^{n}} term in the binomial expansion of (1+x)2{{\left( 1+x \right)}^{-2}}.
We know that the binomial expansion of (1+x)a{{\left( 1+x \right)}^{-a}} is defined as (1+x)a=1+(a)1x+(a)(a1)2×1x2+(a)(a1)(a2)3×2×1x3+...+(a)(a1)(a2)...(ak+1)k×...×3×2×1xk+...{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty for x<1\left| x \right|<1.
We can see that the coefficient of the xk{{x}^{k}} term is (a)(a1)(a2)...(ak+1)k×...×3×2×1\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1} ---(1).
Let us compare the expansion (1+x)2{{\left( 1+x \right)}^{-2}} with (1+x)a{{\left( 1+x \right)}^{-a}}.
So, we get a=2a=2. We substitute this value of a in the equation (1) to find the coefficient of xk{{x}^{k}} in the binomial expansion (1+x)2{{\left( 1+x \right)}^{-2}}.
So, we get the coefficient of the xk{{x}^{k}} term in the binomial expansion (1+x)2{{\left( 1+x \right)}^{-2}} as (2)(21)(22)...(2k+1)k×...×3×2×1=(2)(3)(4)...(1k)k×...×3×2×1=(1)k(2)(3)(4)...(k+1)k×...×3×2×1\dfrac{\left( -2 \right)\left( -2-1 \right)\left( -2-2 \right)...\left( -2-k+1 \right)}{k\times ...\times 3\times 2\times 1}=\dfrac{\left( -2 \right)\left( -3 \right)\left( -4 \right)...\left( -1-k \right)}{k\times ...\times 3\times 2\times 1}={{\left( -1 \right)}^{k}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( k+1 \right)}{k\times ...\times 3\times 2\times 1}.
Now, we need to find the coefficient of xn{{x}^{n}} term in the binomial expansion (1+x)2{{\left( 1+x \right)}^{-2}}.
Let us assume n is odd. So, we get coefficient as (1)n(2)(3)(4)...(n+1)n×...×3×2×1=(1)(n+1)=n1{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( -1 \right)\left( n+1 \right)=-n-1.
Now, let us assume n is even. We get coefficient as (1)n(2)(3)(4)...(n+1)n×...×3×2×1=(1)(n+1)=n+1{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( 1 \right)\left( n+1 \right)=n+1.
We can see that the given options have only one answer which we get only when n is even.
∴ The coefficient of xn{{x}^{n}} term in the binomial expansion of (1+x)2{{\left( 1+x \right)}^{-2}} is n+1n+1.

So, the correct answer is “Option b”.

Note: We should know that the expansion of (1+x)a{{\left( 1+x \right)}^{-a}} will have infinite terms and is valid only if x satisfies the condition x<1\left| x \right|<1. Since the condition x<1\left| x \right|<1 is mentioned in the problem, we assume that the value of x lies in it. We should check the cases when the value of n is even and when n is odd while solving this type of problem. Similarly, we can expect problems to find the coefficient of xn{{x}^{n}} in the binomial expansion (1+x)12{{\left( 1+x \right)}^{-\dfrac{1}{2}}}.