Solveeit Logo

Question

Question: Find the coefficient of \[{{x}^{n}}\]in \[{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+....

Find the coefficient of xn{{x}^{n}}in (1x+x22!x33!+.....+(1)nxnn!)2{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}. Choose the correct option.
A. (n)nn!\dfrac{{{\left( -n \right)}^{n}}}{n!}
B. (2)nn!\dfrac{{{\left( -2 \right)}^{n}}}{n!}
C. 1(n!)2\dfrac{1}{{{\left( n! \right)}^{2}}}
D. 1(n!)2-\dfrac{1}{{{\left( n! \right)}^{2}}}

Explanation

Solution

First multiply (1x+x22!x33!+.....+(1)nxnn!)×(1x+x22!x33!+.....+(1)nxnn!)\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\times \left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right). Now, here xn{{x}^{n}} is found by multiplying 1×xn=xn1\times {{x}^{n}}={{x}^{n}}or x×xn1=xnx\times {{x}^{n-1}}={{x}^{n}}or x2×xn2=xn{{x}^{2}}\times {{x}^{n-2}}={{x}^{n}}and so on. So add all the coefficients of xn{{x}^{n}}and then use the formula that (a+b)n=r=0nnCra(nr)br{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}, when a=b=1a=b=-1, we have: (2)n=r=0n(1)nnCr{{\left( -2 \right)}^{n}}=\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}

Complete step-by-step answer:
In the question, we have to find the coefficient of xn{{x}^{n}}in (1x+x22!x33!+.....+(1)nxnn!)2{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}.
Now we can write(1x+x22!x33!+.....+(1)nxnn!)2=(1x+x22!x33!+.....+(1)nxnn!)×(1x+x22!x33!+.....+(1)nxnn!){{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}=\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\times \left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)
Next, we can see that when we multiply 1×(1)nxnn!=(1)nxnn!1\times \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!}has the xn{{x}^{n}}, similarly when we multiply x×(1)n1xn1(n1)!=(1)nxn(n1)!-x\times \dfrac{{{\left( -1 \right)}^{n-1}}{{x}^{n-1}}}{(n-1)!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{(n-1)!} will gain have the xn{{x}^{n}}. Also, when we multiply x22!×(1)nxn2(n2)!=(1)nxn2!(n2)!\dfrac{{{x}^{2}}}{2!}\times \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n-2}}}{(n-2)!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{2!(n-2)!}will again have xn{{x}^{n}}.
So, we will have the pattern (1)nxn0!n!+(1)nxn1!(n1)!+(1)nxn2!(n2)!+......(1)nxn1!(n1)!+(1)nxn0!n!\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{0!n!}add together will have the xn{{x}^{n}}. So, to find the coefficients xn{{x}^{n}}of we have to add all the terms (1)n0!n!+(1)n1!(n1)!+(1)n2!(n2)!+......(1)n1!(n1)!+(1)n0!n!\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}
Now, we know that that expansion formula for the expression of the form (a+b)n{{\left( a+b \right)}^{n}}will be given by (a+b)n=r=0nnCra(nr)br{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}, So here when a=b=1a=b=-1, we have: (2)n=r=0n(1)nnCr{{\left( -2 \right)}^{n}}=\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}. Now, we have to find the value of the expression (1)n0!n!+(1)n1!(n1)!+(1)n2!(n2)!+......(1)n1!(n1)!+(1)n0!n!\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}, so this can be done as follows:

& \Rightarrow \dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!} \\\ & \Rightarrow \dfrac{1}{n!}\left( \dfrac{{{\left( -1 \right)}^{n}}n!}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}n!}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{0!n!} \right) \\\ & \Rightarrow \dfrac{1}{n!}\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!} \\\ \end{aligned}$$ So here we see that we have $$\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}={{\left( -2 \right)}^{n}}$$,so above expression is: $$\begin{aligned} & \Rightarrow \dfrac{1}{n!}\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}} \\\ & \Rightarrow \dfrac{1}{n!}{{\left( -2 \right)}^{n}} \\\ \end{aligned}$$ So finally, we can say that the value of the expression $$\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}=\dfrac{{{\left( -2 \right)}^{n}}}{n!}$$ Hence, this is the value of the coefficient of $${{x}^{n}}$$. So, the correct answer is option B. **Note:** It can be noted that $$0!=1!=1$$, so we have to be careful in that. Also we should be careful that we have $${{\left( \sum\limits_{n=0}^{\infty }{\;}\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}\ne \left( \sum\limits_{n=0}^{\infty }{\;}{{\left( \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}} \right)$$. Make a note of the expansion formula $${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}$$ is applicable to all types of constant or a variable, integer or a fractional number.