Question
Question: Find the coefficient of \({{x}^{50}}\) in the expression \({{\left( 1+x \right)}^{1000}}+2x{{\left( ...
Find the coefficient of x50 in the expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000?
Solution
We start solving the problem by assigning a variable to the given sum. We then multiply this variable with ‘x’ and divide it with (1+x). We then subtract the obtained result from the given sum in the problem. We can then see that the obtained result has a sum resembling a sum of terms of geometric progression. We then use the fact that the sum of the terms in Geometric progression a, ar, ar2,……,arn−1 (n terms) as 1−ra(1−rn)(∣r∣<1). We then check expansions in the obtained result in which we can get the term x50. We then use the fact that the coefficient of xr in the expansion of (1+x)n(n≥r) is nCr to get the required result.
Complete step-by-step answer:
According to the problem, we are asked to find the coefficient of x50 in the expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000.
Let us assume S=(1+x)1000+2x(1+x)999+3x2(1+x)998+...+1000x999(1+x)+1001x1000 ---(1).
Let us multiply both sides of equation (1) with ‘x’.
xS=x(1+x)1000+2x2(1+x)999+3x3(1+x)998+...+1000x1000(1+x)+1001x1001 ---(2).
Let us divide both sides of equation (2) with (1+x).
1+xxS=x(1+x)999+2x2(1+x)998+3x3(1+x)997+...+1000x1000+1+x1001x1001 ---(3).
Let us subtract equation (3) from equation (1).
So, we get ⇒S−1+xxS=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+......+x1000−1+x1001x1001.
⇒(1+x1+x−x)S=1+x(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x)−1001x1001.
⇒1+xS=1+x(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x)−1001x1001.
⇒S=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x)−1001x1001 ---(4).
Let us assume S1=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x).
⇒S1=(1+x)1001(1+1+xx+(1+xx)2+(1+xx)3+......+(1+xx)1000). We can see that this sum resembles Geometric progression with first term 1, and the common ratio 1+xx.
We know that the sum of the terms in Geometric progression a, ar, ar2,……,arn−1 (n terms) is defined as 1−ra(1−rn)(∣r∣<1).
So, we get S1=(1+x)10011−(1+xx)1(1−(1+xx)1001).
⇒S1=(1+x)1001(1+x1+x−x)1−(1+x)1001x1001.
⇒S1=(1+x)1001(1+x1)(1+x)1001(1+x)1001−x1001.
⇒S1=(1+x)1001((1+x)1000(1+x)1001−x1001).
⇒S1=(1+x)1((1+x)1001−x1001).
⇒S1=(1+x)1002−x1001(1+x) ---(5).
Let us substitute equation (5) in equation (1).
So, we get S=(1+x)1002−x1001(1+x)−1001x1001.
⇒S=(1+x)1002−x1001−x1002−1001x1001.
⇒S=(1+x)1002−1002x1001−x1002 ---(6).
From equation (6), we can see that only the expansion (1+x)1002 has the term x50.
We know that the coefficient of xr in the expansion of (1+x)n(n≥r) is nCr.
So, the co-efficient of the term x50 in the expansion (1+x)1002 is 1002C50.
∴ The coefficient of x50 in the expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000 is 1002C50.
Note: We can see that the given problems contain a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can see that the given expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000 resembles the arithmetic geometric progression with common difference 1 and common ratio 1+xx. So, we can use the sum of ‘n’ terms of arithmetic geometric progression is 1−ra+(1−r)2dr(1−rn−1)−1−r[a+(n−1)d]rn to find the sum which may involve heavy calculations. Here we have assumed that x>0 to apply the sum of ‘n’ terms in Geometric series.