Solveeit Logo

Question

Question: Find the coefficient of \({{x}^{50}}\) in the expression \({{\left( 1+x \right)}^{1000}}+2x{{\left( ...

Find the coefficient of x50{{x}^{50}} in the expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000{{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}?

Explanation

Solution

We start solving the problem by assigning a variable to the given sum. We then multiply this variable with ‘x’ and divide it with (1+x)\left( 1+x \right). We then subtract the obtained result from the given sum in the problem. We can then see that the obtained result has a sum resembling a sum of terms of geometric progression. We then use the fact that the sum of the terms in Geometric progression a, arar, ar2a{{r}^{2}},……,arn1a{{r}^{n-1}} (n terms) as a(1rn)1r(r<1)\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\left( \left| r \right|<1 \right). We then check expansions in the obtained result in which we can get the term x50{{x}^{50}}. We then use the fact that the coefficient of xr{{x}^{r}} in the expansion of (1+x)n(nr){{\left( 1+x \right)}^{n}}\left( n\ge r \right) is nCr{}^{n}{{C}_{r}} to get the required result.

Complete step-by-step answer:
According to the problem, we are asked to find the coefficient of x50{{x}^{50}} in the expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000{{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}.
Let us assume S=(1+x)1000+2x(1+x)999+3x2(1+x)998+...+1000x999(1+x)+1001x1000S={{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+...+1000{{x}^{999}}\left( 1+x \right)+1001{{x}^{1000}} ---(1).
Let us multiply both sides of equation (1) with ‘x’.
xS=x(1+x)1000+2x2(1+x)999+3x3(1+x)998+...+1000x1000(1+x)+1001x1001xS=x{{\left( 1+x \right)}^{1000}}+2{{x}^{2}}{{\left( 1+x \right)}^{999}}+3{{x}^{3}}{{\left( 1+x \right)}^{998}}+...+1000{{x}^{1000}}\left( 1+x \right)+1001{{x}^{1001}} ---(2).
Let us divide both sides of equation (2) with (1+x)\left( 1+x \right).
xS1+x=x(1+x)999+2x2(1+x)998+3x3(1+x)997+...+1000x1000+1001x10011+x\dfrac{xS}{1+x}=x{{\left( 1+x \right)}^{999}}+2{{x}^{2}}{{\left( 1+x \right)}^{998}}+3{{x}^{3}}{{\left( 1+x \right)}^{997}}+...+1000{{x}^{1000}}+\dfrac{1001{{x}^{1001}}}{1+x} ---(3).
Let us subtract equation (3) from equation (1).
So, we get SxS1+x=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+......+x10001001x10011+x\Rightarrow S-\dfrac{xS}{1+x}={{\left( 1+x \right)}^{1000}}+x{{\left( 1+x \right)}^{999}}+{{x}^{2}}{{\left( 1+x \right)}^{998}}+{{x}^{3}}{{\left( 1+x \right)}^{997}}+......+{{x}^{1000}}-\dfrac{1001{{x}^{1001}}}{1+x}.
(1+xx1+x)S=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x)1001x10011+x\Rightarrow \left( \dfrac{1+x-x}{1+x} \right)S=\dfrac{{{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}}{1+x}.
S1+x=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x)1001x10011+x\Rightarrow \dfrac{S}{1+x}=\dfrac{{{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}}{1+x}.
S=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x)1001x1001\Rightarrow S={{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}} ---(4).
Let us assume S1=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+......+x1000(1+x){{S}_{1}}={{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right).
S1=(1+x)1001(1+x1+x+(x1+x)2+(x1+x)3+......+(x1+x)1000)\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( 1+\dfrac{x}{1+x}+{{\left( \dfrac{x}{1+x} \right)}^{2}}+{{\left( \dfrac{x}{1+x} \right)}^{3}}+......+{{\left( \dfrac{x}{1+x} \right)}^{1000}} \right). We can see that this sum resembles Geometric progression with first term 1, and the common ratio x1+x\dfrac{x}{1+x}.
We know that the sum of the terms in Geometric progression a, arar, ar2a{{r}^{2}},……,arn1a{{r}^{n-1}} (n terms) is defined as a(1rn)1r(r<1)\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\left( \left| r \right|<1 \right).
So, we get S1=(1+x)1001(1(1(x1+x)1001)1(x1+x)){{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{1\left( 1-{{\left( \dfrac{x}{1+x} \right)}^{1001}} \right)}{1-\left( \dfrac{x}{1+x} \right)} \right).
S1=(1+x)1001(1x1001(1+x)1001(1+xx1+x))\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{1-\dfrac{{{x}^{1001}}}{{{\left( 1+x \right)}^{1001}}}}{\left( \dfrac{1+x-x}{1+x} \right)} \right).
S1=(1+x)1001((1+x)1001x1001(1+x)1001(11+x))\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{\dfrac{{{\left( 1+x \right)}^{1001}}-{{x}^{1001}}}{{{\left( 1+x \right)}^{1001}}}}{\left( \dfrac{1}{1+x} \right)} \right).
S1=(1+x)1001((1+x)1001x1001(1+x)1000)\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{{{\left( 1+x \right)}^{1001}}-{{x}^{1001}}}{{{\left( 1+x \right)}^{1000}}} \right).
S1=(1+x)1((1+x)1001x1001)\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1}}\left( {{\left( 1+x \right)}^{1001}}-{{x}^{1001}} \right).
S1=(1+x)1002x1001(1+x)\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}\left( 1+x \right) ---(5).
Let us substitute equation (5) in equation (1).
So, we get S=(1+x)1002x1001(1+x)1001x1001S={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}\left( 1+x \right)-1001{{x}^{1001}}.
S=(1+x)1002x1001x10021001x1001\Rightarrow S={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}-{{x}^{1002}}-1001{{x}^{1001}}.
S=(1+x)10021002x1001x1002\Rightarrow S={{\left( 1+x \right)}^{1002}}-1002{{x}^{1001}}-{{x}^{1002}} ---(6).
From equation (6), we can see that only the expansion (1+x)1002{{\left( 1+x \right)}^{1002}} has the term x50{{x}^{50}}.
We know that the coefficient of xr{{x}^{r}} in the expansion of (1+x)n(nr){{\left( 1+x \right)}^{n}}\left( n\ge r \right) is nCr{}^{n}{{C}_{r}}.
So, the co-efficient of the term x50{{x}^{50}} in the expansion (1+x)1002{{\left( 1+x \right)}^{1002}} is 1002C50{}^{1002}{{C}_{50}}.
∴ The coefficient of x50{{x}^{50}} in the expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000{{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}} is 1002C50{}^{1002}{{C}_{50}}.

Note: We can see that the given problems contain a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can see that the given expression (1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001x1000{{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}} resembles the arithmetic geometric progression with common difference 1 and common ratio x1+x\dfrac{x}{1+x}. So, we can use the sum of ‘n’ terms of arithmetic geometric progression is a1r+dr(1rn1)(1r)2[a+(n1)d]rn1r\dfrac{a}{1-r}+\dfrac{dr\left( 1-{{r}^{n-1}} \right)}{{{\left( 1-r \right)}^{2}}}-\dfrac{\left[ a+\left( n-1 \right)d \right]{{r}^{n}}}{1-r} to find the sum which may involve heavy calculations. Here we have assumed that x>0x>0 to apply the sum of ‘n’ terms in Geometric series.