Solveeit Logo

Question

Question: Find the coefficient of \({x^5}\) in \({(x + 3)}^8\)....

Find the coefficient of x5{x^5} in (x+3)8{(x + 3)}^8.

Explanation

Solution

Hint: The knowledge of binomial theorem and expansion is required to solve this problem. The binomial expansion is given by-
(a+bx)n=nC0an+nC1an1b1x+...+nCranrbr+...+nCnbn{\left( {{\text{a}} + bx} \right)^{\text{n}}} = {}_{}^{\text{n}}{\text{C}}_0^{}{{\text{a}}^{\text{n}}} + {}_{}^{\text{n}}{\text{C}}_1^{}{{\text{a}}^{{\text{n}} - 1}}{{\text{b}}^1}{\text{x}} + ... + {}_{}^{\text{n}}{\text{C}}_{\text{r}}^{}{{\text{a}}^{{\text{n}} - {\text{r}}}}{{\text{b}}^{\text{r}}} + ... + {}_{}^{\text{n}}{\text{C}}_{\text{n}}^{}{{\text{b}}^{\text{n}}}.

Complete step-by-step solution -
We have to find the coefficient of x5{x^5} in (x+3)8{(x + 3)}^8.
The formula for the (r)th{(r)}^{th} general term in a binomial expansion is given as-
Tr+1=nCranrbrxr{{\text{T}}_{{\text{r}} + 1}} = {}_{}^{\text{n}}{\text{C}}_{\text{r}}^{}{{\text{a}}^{{\text{n}} - {\text{r}}}}{{\text{b}}^{\text{r}}}{{\text{x}}^{\text{r}}}
Coefficient of x5x^5 = 8C538515{}_{}^8{\text{C}}_5^{}{3^{8 - 5}}{1^5}
Coefficient of x5x^5 = 8C533{}_{}^8{\text{C}}_5^{}{3^3}
=\dfrac{8!}{3!5!}\times 3^3=\dfrac{6\times7\times 8}2\times 3^2\\\
=1512
Hence, the coefficient of x5x^5 in (x+3)8{(x + 3)}^8 is 1512. This is the required answer.

Note: Some students may get 8C3{}_{}^8{\text{C}}_3^{} in their formula instead of 8C5{}_{}^8{\text{C}}_5^{}. But they should not get confused with it. This is a property of combination that-
nCr=nCn - r{}_{}^{\text{n}}{\text{C}}_{\text{r}}^{} = {}_{}^{\text{n}}{\text{C}}_{{\text{n - r}}}^{}
n!(nr)!r!=n!(nn+r)!(nr)!\dfrac{\mathrm n!}{\left(\mathrm n-\mathrm r\right)!\mathrm r!}=\dfrac{\mathrm n!}{\left(\mathrm n-\mathrm n+\mathrm r\right)!\left(\mathrm n-\mathrm r\right)!}