Question
Question: Find the coefficient of \[{{{x}}^{{5}}}\] in the product \[{{{(1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}\]...
Find the coefficient of x5 in the product (1+2x)6(1−x)7using binomial theorem.
Solution
We have to find the coefficient of x5 in the product of(1+2x)6(1−x)7.
First, we need to expand the given equation using the below shown formula.
And then we have to take one term in each of the expansions whose product of degree will be5.
And then have to solve the equation formed to get the required answer.
Formula used:
(x+a)n: Tr+1=nCrxn−rar
(x−a)n : Tr+1=(−1)rnCrxn−rar
nCr=r!(n−r)!n!
n!=n×(n−1)×(n−2)×(n−3)...
(e.g.) 3!=3×2×1
Complete step by step answer:
We have to find the coefficient of x5 in the product of(1+2x)6(1−x)7.
Here we have to use the formula
(x+a)n : Tr+1=nCrxn−rar
(x−a)n : Tr+1=(−1)rnCrxn−rar
With these formulas, we will expand the given equation.
(1+2x)6⇒Tr+1=6Cr(1)n−r(2x)r
Since 1 to any of the power is 1,
(1+2x)6⇒Tr+1=6Cr(2x)r....(1)
Now we have to expand to the second equation,
(1−x)7⇒Tr+1=(−1)rCr(1)n−r(x)r
Again, 1 to any of the power is 1,
(1−x)7⇒Tr+1=(−1)rCr(x)r.....(2)
Now expanding (1) by using the formula, we get
(1+2x)6=6C0+6C1(2x)+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5+6C6(2x)6
Also, expanding (2) by the formula, we get
(1−x)7=7C0x0−7C1x1+7C2x2−7C3x3+7C4x4−7C5x5+7C6x6−7C7x7
Now, we have to find the coefficient of x5 in the product of (1+2x)6(1−x)7
Since it isx5, we have to find the product of terms each from (1+2x)6and(1−x)7that is of degree 5
| Combinations| Coefficient of x5
---|---|---
x0x5| (6C0) −(7C5x5)| 0!(6−0)!6!×[−5!(7−5)!7!×x5] = \dfrac{{6!}}{{6!}} \times \left( { - \dfrac{{7 \times 6 \times 5!}}{{5!2!}}} \right) \times {(1)^5}$$$$ = \dfrac{{ - 7 \times 6}}{{2 \times 1}}$$$$ \Rightarrow - 7 \times 3 = - 21| −21
x1x4| 6C1(2x) 7C4x4| \left[ {\dfrac{{{{6!}}}}{{{{1!(6 - 1)!}}}}{{ \times 2x}}} \right]{{ \times }}\left[ {\dfrac{{{{7!}}}}{{{{4!(7 - 4)!}}}}{{ \times }}{{{x}}^{{4}}}} \right]$$$$ = \left[ {\dfrac{{6 \times 5!}}{{5!}} \times 2(1)} \right] \times \left[ {\dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3!}} \times {{(1)}^4}} \right]$$$$ = \left( {6 \times 2} \right) \times \left( {7 \times 5 \times 1} \right)$$$$ \Rightarrow 12 \times 35 = 420| 420
x2x3| 6C2(2x)2 (−7C3x3)| \left[ {\dfrac{{{{6!}}}}{{{{2!(6 - 2)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^{{2}}}} \right]{{ \times }}\left[ { - \dfrac{{{{7!}}}}{{{{3!(7 - 3)!}}}}{{ \times }}{{{x}}^{{3}}}} \right]$$$$ = \left[ {\dfrac{{6 \times 5 \times 4!}}{{2!4!}} \times 4{{(1)}^2}} \right] \times \left[ { - \dfrac{{7 \times 6 \times 5 \times 4!}}{{3!4!}} \times {{(1)}^3}} \right]$$$$ = \left( {3 \times 5 \times 4} \right) \times \left( { - 7 \times 5} \right)$$$$ \Rightarrow 60 \times \left( { - 35} \right) = - 2100| −2100
x3x2| 6C3(2x)3 7C2x2| \left[ {\dfrac{{{{6!}}}}{{{{3!(6 - 3)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^{{3}}}} \right]{{ \times }}\left[ {\dfrac{{{{7!}}}}{{{{2!(7 - 2)!}}}}{{ \times }}{{{x}}^{{2}}}} \right]$$$$ = \left[ {\dfrac{{6 \times 5 \times 4 \times 3!}}{{3!3!}} \times 8{{(1)}^3}} \right] \times \left[ {\dfrac{{7 \times 6 \times 5!}}{{2!5!}} \times {{(1)}^2}} \right]$$$$ = \left( {5 \times 4 \times 8} \right) \times \left( {7 \times 3} \right)$$$$ \Rightarrow 160 \times 21 = 3360| 3360
x4x1| 6C4(2x)4 (−7C1x1)| \left[ {\dfrac{{{{6!}}}}{{{{4!(6 - 4)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^4}} \right]{{ \times }}\left[ { - \dfrac{{{{7!}}}}{{{{1!(7 - 1)!}}}}{{ \times }}{{{x}}^1}} \right]$$$$ = \left[ {\dfrac{{6 \times 5 \times 4!}}{{4!2!}} \times 16{{(1)}^4}} \right] \times \left[ { - \dfrac{{7 \times 6!}}{{6!}} \times {{(1)}^1}} \right]$$$$ = \left( {3 \times 5 \times 16} \right) \times \left( { - 7} \right)$$$$ \Rightarrow 240 \times \left( { - 7} \right) = - 1680| −1680
x5x0| {}^{{6}}{{{C}}_{{5}}}{\left( {{{2x}}} \right)^{{5}}}$$${}^7{{{C}}_{{0}}}{{{x}}^{{0}}}$| \left[ {\dfrac{{{{6!}}}}{{{{5!(6 - 5)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^5}} \right]{{ \times }}\left[ {\dfrac{{{{7!}}}}{{{{0!(7 - 0)!}}}}{{ \times }}{{{x}}^0}} \right]=[5!6×5!×32(1)5]×[7!7!] = \left( {6 \times 32} \right) \times \left( 1 \right)$$⇒192| 192
| | | Total = 171
So the required answer (i.e.,) the coefficient of x5 in the product of (1+2x)6(1−x)7 is 171
Note: In this question we have alternative method as follow:
We know that,
(x+a)n : Tr+1=nCrxn−rar
(x−a)n : Tr+1=(−1)rnCrxn−rar
With these formulas, we will expand the given equation.
(1+2x)6⇒Tr+1=6Cr(1)n−r(2x)r
Since 1 to any of the power is 1,
(1+2x)6⇒Tr+1=6Cr(2x)r...(1)
(1−x)7⇒Tr+1=(−1)rCr(1)n−r(x)r
Since 1 to any of the power is 1,
(1−x)7⇒Tr+1=(−1)rCr(x)r.....(2)
Now expanding (1) by the formula, we get
(1+2x)6=6C0+6C1(2x)+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5+6C6(2x)6
Let us subtracting the denominator terms and expand the factorial term we get,
=[6!6!]+[5!6×5!×2(x)]+[2!4!6×5×4!×4(x2)]+[3!3!6×5×4×3!×8(x)3]+[4!2!6×5×4!×16(x)4]+ [5!6×5!×32(x)5]+[6!6!×64(x)5]
on some simplification we get,
=1+12x+60x2+160x3+240x4+192x5+64x6−(1)
Also, expanding (2) by the formula, we get
(1−x)7=7C0x0−7C1x1+7C2x2−7C3x3+7C4x4−7C5x5+7C6x6−7C7x7
=[0!(7−0)!7!×x0]−[1!(7−1)!7!×x1]+[2!(7−2)!7!×x2]−[3!(7−3)!7!×x3]+[4!(7−4)!7!×x4]− [5!(7−5)!7!×x5]+[6!(7−6)!7!×x6]−[7!(7−7)!7!×x7]
Let us expand the factorial in the numerator term and subtract the bracket terms in the
denominator we get,
=1−7x+21x2−35x3+35x4−21x5+7x6−x7−(2)
Now, (1+2x)6(1−x)7=(1+12x+60x2+160x3+240x4+192x5+64x6)×(1−7x+21x2−35x3+35x4−21x5+7x6−x7)
| Combinations | Coefficient of x5 putx=1
---|---|---
x0x5| 1×(−21x5)=−21x5 | −21
x1x4| 12x×(35x4)=420x5| 420
x2x3| 60x2×(−35x3)=−2100x5| −2100
x3x2| 160x3×(21x2)=3360x5 | 3360
x4x1| 240x4×(−7x)=−1680x5| −1680
x5x0| 192x5×(1)=192x5| 192
| | Total = 171
So the required answer (i.e.,) the coefficient of x5 in the product of (1+2x)6(1−x)7 is 171.