Solveeit Logo

Question

Question: Find the coefficient of \[{{{x}}^{{5}}}\] in the product \[{{{(1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}\]...

Find the coefficient of x5{{{x}}^{{5}}} in the product (1+2x)6(1x)7{{{(1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}using binomial theorem.

Explanation

Solution

We have to find the coefficient of x5{{{x}}^{{5}}} in the product of(1+2x)6(1x)7{({{1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}.
First, we need to expand the given equation using the below shown formula.
And then we have to take one term in each of the expansions whose product of degree will be55.
And then have to solve the equation formed to get the required answer.

Formula used:
(x+a)n{{{(x + a)}}^{{n}}}: Tr+1=nCrxnrar{{{T}}_{{{r + 1}}}}{{ = n}}{{{C}}_{{r}}}{{{x}}^{{{n - r}}}}{{{a}}^{{r}}}{{ }}
(xa)n{{{(x - a)}}^{{n}}} : Tr+1=(1)rnCrxnrar{{{T}}_{{{r + 1}}}}{{ = ( - 1}}{{{)}}^{{r}}}{}^{{n}}{{{C}}_{{r}}}{{{x}}^{{{n - r}}}}{{{a}}^{{r}}}{{ }}
nCr=n!r!(nr)!{}^{{n}}{{{C}}_{{r}}}{{ = }}\dfrac{{{{n!}}}}{{{{r!}}\left( {{{n - r}}} \right){{!}}}}
n!=n×(n1)×(n2)×(n3)...{{n! = n \times (n - 1) \times (n - 2) \times (n - 3)}}...
(e.g.) 3!=3×2×13! = 3 \times 2 \times 1

Complete step by step answer:
We have to find the coefficient of x5{{{x}}^{{5}}} in the product of(1+2x)6(1x)7{({{1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}.
Here we have to use the formula
(x+a)n{{{(x + a)}}^{{n}}} : Tr+1=nCrxnrar{{{T}}_{{{r + 1}}}}{{ = n}}{{{C}}_{{r}}}{{{x}}^{{{n - r}}}}{{{a}}^{{r}}}
(xa)n{{{(x - a)}}^{{n}}} : Tr+1=(1)rnCrxnrar{{{T}}_{{{r + 1}}}}{{ = ( - 1}}{{{)}}^{{r}}}{}^{{n}}{{{C}}_{{r}}}{{{x}}^{{{n - r}}}}{{{a}}^{{r}}}
With these formulas, we will expand the given equation.
(1+2x)6Tr+1=6Cr(1)nr(2x)r{(1 + 2{{x)}}^6} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = }}{}^{{6}}{{{C}}_{{r}}}{{{(1)}}^{{{n - r}}}}{{{(2x)}}^{{r}}}
Since 1 to any of the power is 1,
(1+2x)6Tr+1=6Cr(2x)r....(1){(1 + {{2x)}}^6} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = }}{}^{{6}}{{{C}}_{{r}}}{{{(2x)}}^{{r}}}{{ }}....{{(1)}}
Now we have to expand to the second equation,
(1x)7Tr+1=(1)rCr(1)nr(x)r{(1 - {{x)}}^{{7}}} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = ( - 1)}}{}^{{r}}{{{C}}_{{r}}}{{{(1)}}^{{{n - r}}}}{{{(x)}}^{{r}}}
Again, 1 to any of the power is 1,
(1x)7Tr+1=(1)rCr(x)r.....(2){{{(1 - x)}}^{{7}}} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = ( - 1)}}{}^{{r}}{{{C}}_{{r}}}{{{(x)}}^{{r}}}.....{{(2)}}
Now expanding (1)(1) by using the formula, we get
(1+2x)6=6C0+6C1(2x)+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5+6C6(2x)6{{{(1 + 2x)}}^{{6}}}{{ = }}{}^{{6}}{{{C}}_{{0}}}{{ + }}{}^{{6}}{{{C}}_{{1}}}\left( {{{2x}}} \right){{ + }}{}^{{6}}{{{C}}_{{2}}}{\left( {{{2x}}} \right)^{{2}}}{{ + }}{}^{{6}}{{{C}}_{{3}}}{\left( {{{2x}}} \right)^{{3}}}{{ + }}{}^{{6}}{{{C}}_{{4}}}{\left( {{{2x}}} \right)^{{4}}}{{ + }}{}^{{6}}{{{C}}_{{5}}}{\left( {{{2x}}} \right)^{{5}}}{{ + }}{}^{{6}}{{{C}}_{{6}}}{\left( {{{2x}}} \right)^{{6}}}
Also, expanding (2)(2) by the formula, we get
(1x)7=7C0x07C1x1+7C2x27C3x3+7C4x47C5x5+7C6x67C7x7{{{(1 - x)}}^{{7}}}{{ = }}{}^{{7}}{{{C}}_{{0}}}{{{x}}^{{0}}}{{ - }}{}^{{7}}{{{C}}_{{1}}}{{{x}}^{{1}}}{{ + }}{}^{{7}}{{{C}}_{{2}}}{{{x}}^{{2}}}{{ - }}{}^{{7}}{{{C}}_{{3}}}{{{x}}^{{3}}}{{ + }}{}^{{7}}{{{C}}_{{4}}}{{{x}}^{{4}}}{{ - }}{}^{{7}}{{{C}}_{{5}}}{{{x}}^{{5}}}{{ + }}{}^{{7}}{{{C}}_{{6}}}{{{x}}^{{6}}}{{ - }}{}^{{7}}{{{C}}_{{7}}}{{{x}}^{{7}}}
Now, we have to find the coefficient of x5{{{x}}^{{5}}} in the product of (1+2x)6(1x)7{{{(1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}
Since it isx5{{{x}}^{{5}}}, we have to find the product of terms each from (1+2x)6and(1x)7{({{1 + 2x)}}^{{6}}}{{and (1 - x}}{{{)}}^{{7}}}that is of degree 55

| Combinations| Coefficient of x5{x^5}
---|---|---
x0x5{{{x}}^{{0}}}{{{x}}^{{5}}}| (6C0)\left( {{}^{{6}}{{{C}}_{{0}}}} \right) (7C5x5) - \left( {{}^{{7}}{{{C}}_{{5}}}{{{x}}^{{5}}}} \right)| 6!0!(60)!×[7!5!(75)!×x5]\dfrac{{{{6!}}}}{{{{0!(6 - 0)!}}}}{{ \times }}\left[ { - \dfrac{{{{7!}}}}{{{{5!(7 - 5)!}}}}{{ \times }}{{{x}}^{{5}}}} \right] = \dfrac{{6!}}{{6!}} \times \left( { - \dfrac{{7 \times 6 \times 5!}}{{5!2!}}} \right) \times {(1)^5}$$$$ = \dfrac{{ - 7 \times 6}}{{2 \times 1}}$$$$ \Rightarrow - 7 \times 3 = - 21| 21 - 21
x1x4{{{x}}^{{1}}}{{{x}}^{{4}}}| 6C1(2x){}^{{6}}{{{C}}_{{1}}}\left( {{{2x}}} \right) 7C4x4{}^{{7}}{{{C}}_{{4}}}{{{x}}^{{4}}}| \left[ {\dfrac{{{{6!}}}}{{{{1!(6 - 1)!}}}}{{ \times 2x}}} \right]{{ \times }}\left[ {\dfrac{{{{7!}}}}{{{{4!(7 - 4)!}}}}{{ \times }}{{{x}}^{{4}}}} \right]$$$$ = \left[ {\dfrac{{6 \times 5!}}{{5!}} \times 2(1)} \right] \times \left[ {\dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3!}} \times {{(1)}^4}} \right]$$$$ = \left( {6 \times 2} \right) \times \left( {7 \times 5 \times 1} \right)$$$$ \Rightarrow 12 \times 35 = 420| 420420
x2x3{{{x}}^{{2}}}{{{x}}^{{3}}}| 6C2(2x)2{}^{{6}}{{{C}}_{{2}}}{\left( {{{2x}}} \right)^{{2}}} (7C3x3)\left( { - {}^{{7}}{{{C}}_{{3}}}{{{x}}^{{3}}}} \right)| \left[ {\dfrac{{{{6!}}}}{{{{2!(6 - 2)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^{{2}}}} \right]{{ \times }}\left[ { - \dfrac{{{{7!}}}}{{{{3!(7 - 3)!}}}}{{ \times }}{{{x}}^{{3}}}} \right]$$$$ = \left[ {\dfrac{{6 \times 5 \times 4!}}{{2!4!}} \times 4{{(1)}^2}} \right] \times \left[ { - \dfrac{{7 \times 6 \times 5 \times 4!}}{{3!4!}} \times {{(1)}^3}} \right]$$$$ = \left( {3 \times 5 \times 4} \right) \times \left( { - 7 \times 5} \right)$$$$ \Rightarrow 60 \times \left( { - 35} \right) = - 2100| 2100 - 2100
x3x2{{{x}}^{{3}}}{{{x}}^{{2}}}| 6C3(2x)3{}^{{6}}{{{C}}_{{3}}}{\left( {{{2x}}} \right)^{{3}}} 7C2x2{}^{{7}}{{{C}}_{{2}}}{{{x}}^{{2}}}| \left[ {\dfrac{{{{6!}}}}{{{{3!(6 - 3)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^{{3}}}} \right]{{ \times }}\left[ {\dfrac{{{{7!}}}}{{{{2!(7 - 2)!}}}}{{ \times }}{{{x}}^{{2}}}} \right]$$$$ = \left[ {\dfrac{{6 \times 5 \times 4 \times 3!}}{{3!3!}} \times 8{{(1)}^3}} \right] \times \left[ {\dfrac{{7 \times 6 \times 5!}}{{2!5!}} \times {{(1)}^2}} \right]$$$$ = \left( {5 \times 4 \times 8} \right) \times \left( {7 \times 3} \right)$$$$ \Rightarrow 160 \times 21 = 3360| 33603360
x4x1{{{x}}^{{4}}}{{{x}}^{{1}}}| 6C4(2x)4{}^{{6}}{{{C}}_{{4}}}{\left( {{{2x}}} \right)^{{4}}} (7C1x1)\left( { - {}^{{7}}{{{C}}_{{1}}}{{{x}}^{{1}}}} \right)| \left[ {\dfrac{{{{6!}}}}{{{{4!(6 - 4)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^4}} \right]{{ \times }}\left[ { - \dfrac{{{{7!}}}}{{{{1!(7 - 1)!}}}}{{ \times }}{{{x}}^1}} \right]$$$$ = \left[ {\dfrac{{6 \times 5 \times 4!}}{{4!2!}} \times 16{{(1)}^4}} \right] \times \left[ { - \dfrac{{7 \times 6!}}{{6!}} \times {{(1)}^1}} \right]$$$$ = \left( {3 \times 5 \times 16} \right) \times \left( { - 7} \right)$$$$ \Rightarrow 240 \times \left( { - 7} \right) = - 1680| 1680 - 1680
x5x0{{{x}}^{{5}}}{{{x}}^{{0}}}| {}^{{6}}{{{C}}_{{5}}}{\left( {{{2x}}} \right)^{{5}}}$$${}^7{{{C}}_{{0}}}{{{x}}^{{0}}}$| \left[ {\dfrac{{{{6!}}}}{{{{5!(6 - 5)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^5}} \right]{{ \times }}\left[ {\dfrac{{{{7!}}}}{{{{0!(7 - 0)!}}}}{{ \times }}{{{x}}^0}} \right]=[6×5!5!×32(1)5]×[7!7!] = \left[ {\dfrac{{6 \times 5!}}{{5!}} \times 32{{(1)}^5}} \right] \times \left[ {\dfrac{{7!}}{{7!}}} \right] = \left( {6 \times 32} \right) \times \left( 1 \right)$$192 \Rightarrow 192| 192192
| | | Total = 171171

So the required answer (i.e.,) the coefficient of x5{{{x}}^{{5}}} in the product of (1+2x)6(1x)7{({{1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}} is 171171

Note: In this question we have alternative method as follow:
We know that,
(x+a)n{{{(x + a)}}^{{n}}} : Tr+1=nCrxnrar{{{T}}_{{{r + 1}}}}{{ = n}}{{{C}}_{{r}}}{{{x}}^{{{n - r}}}}{{{a}}^{{r}}}
(xa)n{{{(x - a)}}^{{n}}} : Tr+1=(1)rnCrxnrar{{{T}}_{{{r + 1}}}}{{ = ( - 1}}{{{)}}^{{r}}}{}^{{n}}{{{C}}_{{r}}}{{{x}}^{{{n - r}}}}{{{a}}^{{r}}}
With these formulas, we will expand the given equation.
(1+2x)6Tr+1=6Cr(1)nr(2x)r{(1 + 2{{x)}}^6} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = }}{}^{{6}}{{{C}}_{{r}}}{{{(1)}}^{{{n - r}}}}{{{(2x)}}^{{r}}}
Since 1 to any of the power is 1,
(1+2x)6Tr+1=6Cr(2x)r...(1){(1 + {{2x)}}^6} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = }}{}^{{6}}{{{C}}_{{r}}}{{{(2x)}}^{{r}}}{{ }}...{{(1)}}
(1x)7Tr+1=(1)rCr(1)nr(x)r{(1 - {{x)}}^{{7}}} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = ( - 1)}}{}^{{r}}{{{C}}_{{r}}}{{{(1)}}^{{{n - r}}}}{{{(x)}}^{{r}}}
Since 1 to any of the power is 1,
(1x)7Tr+1=(1)rCr(x)r.....(2){{{(1 - x)}}^{{7}}} \Rightarrow {{{T}}_{{{r + 1}}}}{{ = ( - 1)}}{}^{{r}}{{{C}}_{{r}}}{{{(x)}}^{{r}}}.....{{(2)}}
Now expanding (1)(1) by the formula, we get
(1+2x)6=6C0+6C1(2x)+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5+6C6(2x)6{{{(1 + 2x)}}^{{6}}}{{ = }}{}^{{6}}{{{C}}_{{0}}}{{ + }}{}^{{6}}{{{C}}_{{1}}}\left( {{{2x}}} \right){{ + }}{}^{{6}}{{{C}}_{{2}}}{\left( {{{2x}}} \right)^{{2}}}{{ + }}{}^{{6}}{{{C}}_{{3}}}{\left( {{{2x}}} \right)^{{3}}}{{ + }}{}^{{6}}{{{C}}_{{4}}}{\left( {{{2x}}} \right)^{{4}}}{{ + }}{}^{{6}}{{{C}}_{{5}}}{\left( {{{2x}}} \right)^{{5}}}{{ + }}{}^{{6}}{{{C}}_{{6}}}{\left( {{{2x}}} \right)^{{6}}}

=6!0!(60)!+[6!1!(61)!×2x]+[6!2!(62)!×(2x)2]+[6!3!(63)!×(2x)3]+[6!4!(64)!×(2x)4]+ [6!5!(65)!×(2x)5]+[6!6!(66)!×(2x)6]  = \dfrac{{{{6!}}}}{{{{0!(6 - 0)!}}}} + \left[ {\dfrac{{{{6!}}}}{{{{1!(6 - 1)!}}}}{{ \times 2x}}} \right] + \left[ {\dfrac{{{{6!}}}}{{{{2!(6 - 2)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^{{2}}}} \right] + \left[ {\dfrac{{{{6!}}}}{{{{3!(6 - 3)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^{{3}}}} \right] + \left[ {\dfrac{{{{6!}}}}{{{{4!(6 - 4)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^4}} \right] + \\\ \left[ {\dfrac{{{{6!}}}}{{{{5!(6 - 5)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^5}} \right] + \left[ {\dfrac{{{{6!}}}}{{{{6!(6 - 6)!}}}}{{ \times }}{{\left( {{{2x}}} \right)}^6}} \right] \\\

Let us subtracting the denominator terms and expand the factorial term we get,
=[6!6!]+[6×5!5!×2(x)]+[6×5×4!2!4!×4(x2)]+[6×5×4×3!3!3!×8(x)3]+[6×5×4!4!2!×16(x)4]+ [6×5!5!×32(x)5]+[6!6!×64(x)5]  {{ = }}\left[ {\dfrac{{{{6!}}}}{{{{6!}}}}} \right]{{ + }}\left[ {\dfrac{{{{6 \times 5!}}}}{{{{5!}}}}{{ \times 2(x)}}} \right]{{ + }}\left[ {\dfrac{{{{6 \times 5 \times 4!}}}}{{{{2!4!}}}}{{ \times 4(}}{{{x}}^2}{{)}}} \right]{{ + }}\left[ {\dfrac{{{{6 \times 5 \times 4 \times 3!}}}}{{{{3!3!}}}}{{ \times 8(x}}{{{)}}^{{3}}}} \right]{{ + }}\left[ {\dfrac{{{{6 \times 5 \times 4!}}}}{{{{4!2!}}}}{{ \times 16(x}}{{{)}}^{{4}}}} \right]{{ + }} \\\ \left[ {\dfrac{{{{6 \times 5!}}}}{{{{5!}}}}{{ \times 32(x}}{{{)}}^{{5}}}} \right]{{ + }}\left[ {\dfrac{{{{6!}}}}{{{{6!}}}}{{ \times 64(x}}{{{)}}^{{5}}}} \right] \\\
on some simplification we get,
=1+12x+60x2+160x3+240x4+192x5+64x6(1){{ = 1 + 12x + 60}}{{{x}}^2}{{ + 160}}{{{x}}^3}{{ + 240}}{{{x}}^4}{{ + 192}}{{{x}}^5}{{ + 64}}{{{x}}^6} - (1)
Also, expanding (2)(2) by the formula, we get
(1x)7=7C0x07C1x1+7C2x27C3x3+7C4x47C5x5+7C6x67C7x7{{{(1 - x)}}^{{7}}}{{ = }}{}^{{7}}{{{C}}_{{0}}}{{{x}}^{{0}}}{{ - }}{}^{{7}}{{{C}}_{{1}}}{{{x}}^{{1}}}{{ + }}{}^{{7}}{{{C}}_{{2}}}{{{x}}^{{2}}}{{ - }}{}^{{7}}{{{C}}_{{3}}}{{{x}}^{{3}}}{{ + }}{}^{{7}}{{{C}}_{{4}}}{{{x}}^{{4}}}{{ - }}{}^{{7}}{{{C}}_{{5}}}{{{x}}^{{5}}}{{ + }}{}^{{7}}{{{C}}_{{6}}}{{{x}}^{{6}}}{{ - }}{}^{{7}}{{{C}}_{{7}}}{{{x}}^{{7}}}
=[7!0!(70)!×x0][7!1!(71)!×x1]+[7!2!(72)!×x2][7!3!(73)!×x3]+[7!4!(74)!×x4] [7!5!(75)!×x5]+[7!6!(76)!×x6][7!7!(77)!×x7]  = \left[ {\dfrac{{{{7!}}}}{{{{0!(7 - 0)!}}}}{{ \times }}{{{x}}^0}} \right] - \left[ {\dfrac{{{{7!}}}}{{{{1!(7 - 1)!}}}}{{ \times }}{{{x}}^1}} \right] + \left[ {\dfrac{{{{7!}}}}{{{{2!(7 - 2)!}}}}{{ \times }}{{{x}}^{{2}}}} \right] - \left[ {\dfrac{{{{7!}}}}{{{{3!(7 - 3)!}}}}{{ \times }}{{{x}}^{{3}}}} \right] + \left[ {\dfrac{{{{7!}}}}{{{{4!(7 - 4)!}}}}{{ \times }}{{{x}}^{{4}}}} \right] - \\\ \left[ {\dfrac{{{{7!}}}}{{{{5!(7 - 5)!}}}}{{ \times }}{{{x}}^{{5}}}} \right] + \left[ {\dfrac{{{{7!}}}}{{{{6!(7 - 6)!}}}}{{ \times }}{{{x}}^6}} \right] - \left[ {\dfrac{{{{7!}}}}{{{{7!(7 - 7)!}}}}{{ \times }}{{{x}}^7}} \right] \\\
Let us expand the factorial in the numerator term and subtract the bracket terms in the
denominator we get,

=[7!7!][7×6!6!×(x)1]+[7×6×5!2!5!×(x)2][7×6×5×4!3!4!×(x)3]+[7×6×5×4!4!3!×(x)4] [7×6×5!5!2!×(x)5]+[7×6!6!1!×(x)6][7!7!×(x)7]  = \left[ {\dfrac{{{{7!}}}}{{{{7!}}}}} \right]{{ - }}\left[ {\dfrac{{{{7 \times 6!}}}}{{{{6!}}}}{{ \times (x}}{{{)}}^{{1}}}} \right]{{ + }}\left[ {\dfrac{{{{7 \times 6 \times 5!}}}}{{{{2!5!}}}}{{ \times (x}}{{{)}}^{{2}}}} \right]{{ - }}\left[ {\dfrac{{{{7 \times 6 \times 5 \times 4!}}}}{{{{3!4!}}}}{{ \times (x}}{{{)}}^{{3}}}} \right]{{ + }}\left[ {\dfrac{{{{7 \times 6 \times 5 \times 4!}}}}{{{{4!3!}}}}{{ \times (x}}{{{)}}^{{4}}}} \right]{{ - }} \\\ \left[ {\dfrac{{{{7 \times 6 \times 5!}}}}{{{{5!2!}}}}{{ \times (x}}{{{)}}^{{5}}}} \right]{{ + }}\left[ {\dfrac{{{{7 \times 6!}}}}{{{{6!1!}}}}{{ \times (x}}{{{)}}^{{6}}}} \right]{{ - }}\left[ {\dfrac{{{{7!}}}}{{{{7!}}}}{{ \times (x}}{{{)}}^{{7}}}} \right] \\\

=17x+21x235x3+35x421x5+7x6x7(2){{ = 1 - 7x + 21}}{{{x}}^{{2}}}{{ - 35}}{{{x}}^{{3}}}{{ + 35}}{{{x}}^{{4}}}{{ - 21}}{{{x}}^{{5}}}{{ + 7}}{{{x}}^{{6}}}{{ - }}{{{x}}^{{7}}}{{ - (2)}}
Now, (1+2x)6(1x)7{({{1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}}=(1+12x+60x2+160x3+240x4+192x5+64x6)×(17x+21x235x3+35x421x5+7x6x7)\left( {{{1 + 12x + 60}}{{{x}}^2}{{ + 160}}{{{x}}^3}{{ + 240}}{{{x}}^4}{{ + 192}}{{{x}}^5}{{ + 64}}{{{x}}^6}} \right) \times \left( {{{1 - 7x + 21}}{{{x}}^{{2}}}{{ - 35}}{{{x}}^{{3}}}{{ + 35}}{{{x}}^{{4}}}{{ - 21}}{{{x}}^{{5}}}{{ + 7}}{{{x}}^{{6}}}{{ - }}{{{x}}^{{7}}}} \right){{ }}

| Combinations | Coefficient of x5{{{x}}^{{5}}} putx=1{{put x = 1}}
---|---|---
x0x5{{{x}}^{{0}}}{{{x}}^{{5}}}| 1×(21x5)=21x5{{1 \times ( - 21}}{{{x}}^{{5}}}{{) = - 21}}{{{x}}^{{5}}} | 21 - 21
x1x4{{{x}}^{{1}}}{{{x}}^{{4}}}| 12x×(35x4)=420x5{{12x \times (35}}{{{x}}^4}{{) = 420}}{{{x}}^{{5}}}| 420420
x2x3{{{x}}^{{2}}}{{{x}}^{{3}}}| 60x2×(35x3)=2100x5{{60}}{{{x}}^2}{{ \times ( - 35}}{{{x}}^3}{{) = - 2100}}{{{x}}^{{5}}}| 2100 - 2100
x3x2{{{x}}^{{3}}}{{{x}}^{{2}}}| 160x3×(21x2)=3360x5{{160}}{{{x}}^3}{{ \times (21}}{{{x}}^2}{{) = 3360}}{{{x}}^{{5}}} | 33603360
x4x1{{{x}}^{{4}}}{{{x}}^{{1}}}| 240x4×(7x)=1680x5{{240}}{{{x}}^4}{{ \times ( - 7x) = - 1680}}{{{x}}^{{5}}}| 1680 - 1680
x5x0{{{x}}^{{5}}}{{{x}}^{{0}}}| 192x5×(1)=192x5{{192}}{{{x}}^5}{{ \times (1) = 192}}{{{x}}^{{5}}}| 192192
| | Total = 171171

So the required answer (i.e.,) the coefficient of x5{{{x}}^{{5}}} in the product of (1+2x)6(1x)7{({{1 + 2x)}}^{{6}}}{{{(1 - x)}}^{{7}}} is 171171.