Solveeit Logo

Question

Question: Find the coefficient of \({{x}^{4}}\) in the expansion of \({{\left( 1+2x \right)}^{4}}{{\left( 2-x ...

Find the coefficient of x4{{x}^{4}} in the expansion of (1+2x)4(2x)5{{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}}

Explanation

Solution

We start solving this question by first dividing the given expression (1+2x)4(2x)5{{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}} into two parts (1+2x)4{{\left( 1+2x \right)}^{4}} and (2x)5{{\left( 2-x \right)}^{5}}. Then we use the formula for the binomial expansion (a+x)n=nC0an+nC1an1x+nC2an2x2+.........+nCn1axn1+nCnxn{{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}} to find the expansion of the two parts. Then we find the coefficients obtained by multiplying the terms of first part and second part that gives x4{{x}^{4}} and add them to find the coefficient of x4{{x}^{4}}.

Complete step-by-step answer:
First, let us go through the formula for the binomial expansion of a first-degree polynomial
(a+x)n=nC0an+nC1an1x+nC2an2x2+.........+nCn1axn1+nCnxn{{\left( a+x \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}x+{}^{n}{{C}_{2}}{{a}^{n-2}}{{x}^{2}}+.........+{}^{n}{{C}_{n-1}}a{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}
Now let us divide the given polynomial into two parts (1+2x)4{{\left( 1+2x \right)}^{4}} and (2x)5{{\left( 2-x \right)}^{5}}.
Now let us go through the first part (1+2x)4{{\left( 1+2x \right)}^{4}}. By using the above discussed formula expansion and applying it we get,
(1+2x)4=4C0+4C1(2x)+4C2(2x)2+4C3(2x)3+4C4(2x)4{{\left( 1+2x \right)}^{4}}={}^{4}{{C}_{0}}+{}^{4}{{C}_{1}}\left( 2x \right)+{}^{4}{{C}_{2}}{{\left( 2x \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 2x \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 2x \right)}^{4}}
Now let us consider the formula nCr{}^{n}{{C}_{r}}
nCr=n!r!×(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}
Using that we get
4C0=4!0!×4!=1 4C1=4!1!×3!=4 4C2=4!2!×2!=6 4C3=4!3!×1!=4 4C4=4!4!×0!=1 \begin{aligned} & \Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{0!\times 4!}=1 \\\ & \Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1!\times 3!}=4 \\\ & \Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!\times 2!}=6 \\\ & \Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!\times 1!}=4 \\\ & \Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!\times 0!}=1 \\\ \end{aligned}
Substituting the values in the above expansion, we get
(1+2x)4=1+4(2x)+6(4x2)+4(8x3)+1(16x4) (1+2x)4=1+8x+24x2+32x3+16x4 \begin{aligned} & \Rightarrow {{\left( 1+2x \right)}^{4}}=1+4\left( 2x \right)+6\left( 4{{x}^{2}} \right)+4\left( 8{{x}^{3}} \right)+1\left( 16{{x}^{4}} \right) \\\ & \Rightarrow {{\left( 1+2x \right)}^{4}}=1+8x+24{{x}^{2}}+32{{x}^{3}}+16{{x}^{4}} \\\ \end{aligned}
Now let us consider the second part (2x)5{{\left( 2-x \right)}^{5}}. By applying the binomial expansion for it we get,
(2x)5=5C0(2)5+5C1(2)4(x)+5C2(2)3(x)2+5C3(2)2(x)3+5C4(2)(x)4+5C5(x)5{{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}}
Now let us consider the formula nCr{}^{n}{{C}_{r}}
nCr=n!r!×(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}
Using that we get
5C0=5!0!×5!=1 5C1=5!1!×4!=5 5C2=5!2!×3!=10 5C3=5!3!×2!=10 5C4=5!4!×1!=5 5C5=5!5!×0!=1 \begin{aligned} & \Rightarrow {}^{5}{{C}_{0}}=\dfrac{5!}{0!\times 5!}=1 \\\ & \Rightarrow {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!}=5 \\\ & \Rightarrow {}^{5}{{C}_{2}}=\dfrac{5!}{2!\times 3!}=10 \\\ & \Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\times 2!}=10 \\\ & \Rightarrow {}^{5}{{C}_{4}}=\dfrac{5!}{4!\times 1!}=5 \\\ & \Rightarrow {}^{5}{{C}_{5}}=\dfrac{5!}{5!\times 0!}=1 \\\ \end{aligned}
Substituting the values in the above expansion, we get
(2x)5=5C0(2)5+5C1(2)4(x)+5C2(2)3(x)2+5C3(2)2(x)3+5C4(2)(x)4+5C5(x)5 (2x)5=32+5(16)(x)+10(8)x2+10(4)(x3)+5(2)x4+5C5(x5) (2x)5=3280x+80x240x3+10x4x5 \begin{aligned} & \Rightarrow {{\left( 2-x \right)}^{5}}={}^{5}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{5}{{C}_{1}}{{\left( 2 \right)}^{4}}\left( -x \right)+{}^{5}{{C}_{2}}{{\left( 2 \right)}^{3}}{{\left( -x \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( 2 \right)}^{2}}{{\left( -x \right)}^{3}}+{}^{5}{{C}_{4}}\left( 2 \right){{\left( -x \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -x \right)}^{5}} \\\ & \Rightarrow {{\left( 2-x \right)}^{5}}=32+5\left( 16 \right)\left( -x \right)+10\left( 8 \right){{x}^{2}}+10\left( 4 \right)\left( -{{x}^{3}} \right)+5\left( 2 \right){{x}^{4}}+{}^{5}{{C}_{5}}\left( -{{x}^{5}} \right) \\\ & \Rightarrow {{\left( 2-x \right)}^{5}}=32-80x+80{{x}^{2}}-40{{x}^{3}}+10{{x}^{4}}-{{x}^{5}} \\\ \end{aligned}
As we need to find the coefficient of x4{{x}^{4}} in the expansion.
We can get x4{{x}^{4}} by multiplying the coefficients of
x0{{x}^{0}} of first part with x4{{x}^{4}} of second part we get 1(10x4)1\left( 10{{x}^{4}} \right)
x1{{x}^{1}} of first part with x3{{x}^{3}} of second part we get 8x(40x3)8x\left( -40{{x}^{3}} \right)
x2{{x}^{2}} of first part with x2{{x}^{2}} of second part we get 24x2(80x2)24{{x}^{2}}\left( 80{{x}^{2}} \right)
x3{{x}^{3}} of first part with x1{{x}^{1}} of second part we get 32x3(80x)32{{x}^{3}}\left( -80x \right)
x4{{x}^{4}} of first part with x0{{x}^{0}} of second part we get 16x4(32)16{{x}^{4}}\left( 32 \right)
We need to find the coefficient of x4{{x}^{4}}. So, by adding all the terms we get,
1(10x4)+8x(40x3)+24x2(80x2)+32x3(80x)+16x4(32) 10x4320x4+1920x42560x4+512x4 438x4 \begin{aligned} & \Rightarrow 1\left( 10{{x}^{4}} \right)+8x\left( -40{{x}^{3}} \right)+24{{x}^{2}}\left( 80{{x}^{2}} \right)+32{{x}^{3}}\left( -80x \right)+16{{x}^{4}}\left( 32 \right) \\\ & \Rightarrow 10{{x}^{4}}-320{{x}^{4}}+1920{{x}^{4}}-2560{{x}^{4}}+512{{x}^{4}} \\\ & \Rightarrow -438{{x}^{4}} \\\ \end{aligned}
So, we get that the coefficient of x4{{x}^{4}} in the expansion of (1+2x)4(2x)5{{\left( 1+2x \right)}^{4}}{{\left( 2-x \right)}^{5}} is -438.
Hence, the answer is -438.

Note: The common mistake that one does while solving this problem is one might multiply the coefficient of x4{{x}^{4}} in the first part with the coefficient of x0{{x}^{0}} in second part and multiply the coefficient of x0{{x}^{0}} in the first part with the coefficient of x4{{x}^{4}} in second part. Then we get
1(10x4)+16x4(32) 10x4+512x4 522x4 \begin{aligned} & \Rightarrow 1\left( 10{{x}^{4}} \right)+16{{x}^{4}}\left( 32 \right) \\\ & \Rightarrow 10{{x}^{4}}+512{{x}^{4}} \\\ & \Rightarrow 522{{x}^{4}} \\\ \end{aligned}
Then we get the coefficient of x4{{x}^{4}} as 522. But we need to consider all the possible choices of getting x4{{x}^{4}} in the expansion.