Solveeit Logo

Question

Question: Find the coefficient of \({{x}^{4}}\) in the expansion of \({{(2-4x+3{{x}^{2}})}^{-2}}\)....

Find the coefficient of x4{{x}^{4}} in the expansion of
(24x+3x2)2{{(2-4x+3{{x}^{2}})}^{-2}}.

Explanation

Solution

- Hint: Assume that the roots of the quadratic expression 3x24x+2=03{{x}^{2}}-4x+2=0 are a and b. Hence write 1(3x24x+2)2\dfrac{1}{{{\left( 3{{x}^{2}}-4x+2 \right)}^{2}}} as 19(1(xa)(xb))2\dfrac{1}{9}{{\left( \dfrac{1}{\left( x-a \right)\left( x-b \right)} \right)}^{2}}. Decompose 1(xa)(xb)\dfrac{1}{\left( x-a \right)\left( x-b \right)} into partial fractions by multiplying and dividing numerator by bab-a and writing b-a as (x-a)-(x-b). Use the identity (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} and binomial theorem for non-integral powers and hence find the coefficient of x4{{x}^{4}} in the expansion of the term.

Complete step-by-step solution -
Let the roots of the quadratic expression 3x24x+2=03{{x}^{2}}-4x+2=0 be a and b.
Hence, we have
3x24x+2=3(xa)(xb)3{{x}^{2}}-4x+2=3\left( x-a \right)\left( x-b \right)
Hence, the given expression(E say) becomes
E=19(1(xa)(xb))2E=\dfrac{1}{9}{{\left( \dfrac{1}{\left( x-a \right)\left( x-b \right)} \right)}^{2}}
Inside the square term multiplying numerator and denominator by a-b, we get
E=19(ab)2(ab(xa)(xb))2E=\dfrac{1}{9{{\left( a-b \right)}^{2}}}{{\left( \dfrac{a-b}{\left( x-a \right)\left( x-b \right)} \right)}^{2}}
Writing a-b as (x-b)-(x-a) in the numerator, we get
E=19(ab)2(xb(xa)(xa)(xb))2E=\dfrac{1}{9{{\left( a-b \right)}^{2}}}{{\left( \dfrac{x-b-\left( x-a \right)}{\left( x-a \right)\left( x-b \right)} \right)}^{2}}
Using a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}, we get
E=19(ab)2(1xa1xb)2E=\dfrac{1}{9{{\left( a-b \right)}^{2}}}{{\left( \dfrac{1}{x-a}-\dfrac{1}{x-b} \right)}^{2}}
Using the identity (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}, we get
E=19(ab)2(1(xa)2+1(xb)2+2(xa)(xb))E=\dfrac{1}{9{{\left( a-b \right)}^{2}}}\left( \dfrac{1}{{{\left( x-a \right)}^{2}}}+\dfrac{1}{{{\left( x-b \right)}^{2}}}+\dfrac{2}{\left( x-a \right)\left( x-b \right)} \right)
From the above procedure, we know that 1(xa)(xb)=1ab(1xa1xb)\dfrac{1}{\left( x-a \right)\left( x-b \right)}=\dfrac{1}{a-b}\left( \dfrac{1}{x-a}-\dfrac{1}{x-b} \right)
Hence, we have
E=19(ab)2(1(xa)2+1(xb)2+2ab(1xa1xb))E=\dfrac{1}{9{{\left( a-b \right)}^{2}}}\left( \dfrac{1}{{{\left( x-a \right)}^{2}}}+\dfrac{1}{{{\left( x-b \right)}^{2}}}+\dfrac{2}{a-b}\left( \dfrac{1}{x-a}-\dfrac{1}{x-b} \right) \right)
Consider the term 1(xa)2\dfrac{1}{{{\left( x-a \right)}^{2}}}
We know from binomial theorem for real exponents
(1+x)n=1+nx+n(n1)2!x2+{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\cdots
Hence, we have
(xa)2=a2(1xa)2=1a2(1+2xa+3!2!(xa)2+4!3!(xa)3+5!4!(xa)4+O(x5)){{\left( x-a \right)}^{-2}}={{a}^{-2}}{{\left( 1-\dfrac{x}{a} \right)}^{-2}}=\dfrac{1}{{{a}^{2}}}\left( 1+\dfrac{2x}{a}+\dfrac{3!}{2!}{{\left( \dfrac{x}{a} \right)}^{2}}+\dfrac{4!}{3!}{{\left( \dfrac{x}{a} \right)}^{3}}+\dfrac{5!}{4!}{{\left( \dfrac{x}{a} \right)}^{4}}+O\left( {{x}^{5}} \right) \right)
Hence the coefficient of x4{{x}^{4}} in the expansion of 1(xa)2\dfrac{1}{{{\left( x-a \right)}^{2}}} is 5a6\dfrac{5}{{{a}^{6}}}
Similarly, the coefficient of x4{{x}^{4}} in the expansion of 1(xb)2\dfrac{1}{{{\left( x-b \right)}^{2}}} is 5b6\dfrac{5}{{{b}^{6}}}
Consider the term 1xa\dfrac{1}{x-a}
We know from binomial theorem for real exponents
(1+x)n=1+nx+n(n1)2!x2+{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\cdots
Hence, we have
(xa)1=a1(1xa)1=1a(1+xa+(xa)2+(xa)3+(xa)4+O(x5)){{\left( x-a \right)}^{-1}}=-{{a}^{-1}}{{\left( 1-\dfrac{x}{a} \right)}^{-1}}=-\dfrac{1}{a}\left( 1+\dfrac{x}{a}+{{\left( \dfrac{x}{a} \right)}^{2}}+{{\left( \dfrac{x}{a} \right)}^{3}}+{{\left( \dfrac{x}{a} \right)}^{4}}+O\left( {{x}^{5}} \right) \right)
Hence the coefficient of x4{{x}^{4}} in the expansion of 1(xa)\dfrac{1}{\left( x-a \right)} is 1a5-\dfrac{1}{{{a}^{5}}}
Similarly, the coefficient of x4{{x}^{4}} in the expansion of 1xb\dfrac{1}{x-b} is 1b5-\dfrac{1}{{{b}^{5}}}
Hence, the coefficient of x4{{x}^{4}} in the expansion of E is 19(ab)2(5a6+5b62ab(1a5+1b5))=19(ab)2(5(ab)6(a6+b6)2(a5b5)(ab)(ab)5)\dfrac{1}{9{{\left( a-b \right)}^{2}}}\left( \dfrac{5}{{{a}^{6}}}+\dfrac{5}{{{b}^{6}}}-\dfrac{2}{a-b}\left( -\dfrac{1}{{{a}^{5}}}+\dfrac{1}{{{b}^{5}}} \right) \right)=\dfrac{1}{9{{\left( a-b \right)}^{2}}}\left( \dfrac{5}{{{\left( ab \right)}^{6}}}\left( {{a}^{6}}+{{b}^{6}} \right)-\dfrac{2\left( {{a}^{5}}-{{b}^{5}} \right)}{\left( a-b \right){{\left( ab \right)}^{5}}} \right)
Dividing a5b5{{a}^{5}}-{{b}^{5}} by a-b

Hence, we have a5b5ab=(a4+b4+ab(a2+b2)+a2b2)\dfrac{{{a}^{5}}-{{b}^{5}}}{a-b}=\left( {{a}^{4}}+{{b}^{4}}+ab\left( {{a}^{2}}+{{b}^{2}} \right)+{{a}^{2}}{{b}^{2}} \right)
Hence, the coefficient of x4{{x}^{4}} in the expansion of E is
19(ab)2(5(ab)6(a6+b6)2(a4+b4+ab(a2+b2)+a2b2)(ab)5)\dfrac{1}{9{{\left( a-b \right)}^{2}}}\left( \dfrac{5}{{{\left( ab \right)}^{6}}}\left( {{a}^{6}}+{{b}^{6}} \right)-\dfrac{2\left( {{a}^{4}}+{{b}^{4}}+ab\left( {{a}^{2}}+{{b}^{2}} \right)+{{a}^{2}}{{b}^{2}} \right)}{{{\left( ab \right)}^{5}}} \right)
Now, we have a+b=43,ab=23a+b=\dfrac{4}{3},ab=\dfrac{2}{3}
Hence, we have
(ab)2=(a+b)24ab=16983=89{{\left( a-b \right)}^{2}}={{\left( a+b \right)}^{2}}-4ab=\dfrac{16}{9}-\dfrac{8}{3}=\dfrac{-8}{9}
Also, we have
a2+b2=(a+b)22ab=16943=49 a4+b4=(a2+b2)22(ab)2=16812×49=168189=5681 a6+b6=(a2+b2)(a4+b4(ab)2)=49(568149)=368729 \begin{aligned} & {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab=\dfrac{16}{9}-\dfrac{4}{3}=\dfrac{4}{9} \\\ & {{a}^{4}}+{{b}^{4}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}-2{{\left( ab \right)}^{2}}=\dfrac{16}{81}-2\times \dfrac{4}{9}=\dfrac{16}{81}-\dfrac{8}{9}=\dfrac{-56}{81} \\\ & {{a}^{6}}+{{b}^{6}}=\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{a}^{4}}+{{b}^{4}}-{{\left( ab \right)}^{2}} \right)=\dfrac{4}{9}\left( \dfrac{-56}{81}-\dfrac{4}{9} \right)=\dfrac{-368}{729} \\\ \end{aligned}
Hence, we have
The coefficient of x4{{x}^{4}} in the expansion of E is
19(89)(5(23)6(368729)+2(23)5(5681+23(49)+(23)2))=5916\dfrac{1}{9\left( \dfrac{-8}{9} \right)}\left( \dfrac{5}{{{\left( \dfrac{2}{3} \right)}^{6}}}\left( \dfrac{-368}{729} \right)+\dfrac{2}{{{\left( \dfrac{2}{3} \right)}^{5}}}\left( \dfrac{-56}{81}+\dfrac{2}{3}\left( \dfrac{4}{9} \right)+{{\left( \dfrac{2}{3} \right)}^{2}} \right) \right)=\dfrac{59}{16}
Hence the coefficient of x4{{x}^{4}} in the expansion of (24x+3x2)2{{(2-4x+3{{x}^{2}})}^{-2}} is 5916\dfrac{59}{16}

Note: These types of questions usually involve long and cumbersome calculations, and hence a student is likely to make calculation mistakes. So we should try to minimise calculations as much as possible. In the above question, we minimise our calculation by converting to partial fractions and finding the coefficients of individual terms in summation rather than in product which made the calculations relatively easy.