Solveeit Logo

Question

Question: Find the coefficient of \[{x^{13}}\] in the expansion of \[{(1 - x)^5}.x.{(1 + x + {x^2} + {x^3})^4}...

Find the coefficient of x13{x^{13}} in the expansion of (1x)5.x.(1+x+x2+x3)4{(1 - x)^5}.x.{(1 + x + {x^2} + {x^3})^4} .

Explanation

Solution

Hint : We solve this using binomial expansion. We know in binomial expansion of (a+b)n{(a + b)^n} , the (r+1)th{(r + 1)^{th}} term denoted by tr+1{t_{r + 1}} and it's given by tr+1=nCr.anr.br{t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r} . We convert the above expansion term in the form (a+b)n{(a + b)^n} , then we apply the tr+1{t_{r + 1}} formula to find the required coefficient. We know nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} .

Complete step-by-step answer :
We know the binomial expansion (a+b)n=r=0nnCrxnryr{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}}{y^r}} , where nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} .
We have, (1x)5×x×(1+x+x2+x3)4{(1 - x)^5} \times x \times {(1 + x + {x^2} + {x^3})^4} ------ (1)
As we can see, in the second term 1+x+x2+x31 + x + {x^2} + {x^3} are in G.P.
Sum of n terms Sn=a(1rn)(1r){S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}} .
In (1+x+x2+x3)4{(1 + x + {x^2} + {x^3})^4} we have a=1a = 1 , r=xr = x and n=4n = 4 .
S4=(1x41x)4\Rightarrow {S_4} = {\left( {\dfrac{{1 - {x^4}}}{{1 - x}}} \right)^4}
S4=(1x4)4(1x)4\Rightarrow {S_4} = \dfrac{{{{(1 - {x^4})}^4}}}{{{{(1 - x)}^4}}}
Substituting in equation (1), we get
(1x)5×x×(1+x+x2+x3)4{(1 - x)^5} \times x \times {(1 + x + {x^2} + {x^3})^4}
=(1x)5×x×(1x4)4(1x)4\Rightarrow = {(1 - x)^5} \times x \times \dfrac{{{{(1 - {x^4})}^4}}}{{{{(1 - x)}^4}}}
Cancelling terms
(1x)1×x×(1x4)4\Rightarrow {(1 - x)^1} \times x \times {(1 - {x^4})^4} .
In (1x)1{(1 - x)^1} in this expansion we only have xx . Meaning that we cannot have x13{x^{13}} term in this expansion. So we neglect (1x)1{(1 - x)^1} term. Now in x×(1x4)4x \times {(1 - {x^4})^4} , in the expansion of (1x4)4{(1 - {x^4})^4} we get x4,x8,x12...{x^4},{x^8},{x^{12}}... and we have xx multiplying for each of the term x4,x8,x12...{x^4},{x^8},{x^{12}}... we will get x13{x^{13}} when x12{x^{12}} multiplied by xx .
Hence, we take only the terms x×(1x4)4x \times {(1 - {x^4})^4} ------ (2)
We know in binomial expansion of (a+b)n{(a + b)^n} , the (r+1)th{(r + 1)^{th}} term denoted by tr+1{t_{r + 1}} and its given by tr+1=nCr.anr.br{t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r}
(1x4)4{(1 - {x^4})^4} we have n=4n = 4 , a=1a = 1 and b=x4b = - {x^4}
tr+1=4Cr.(1)4r.(x4)r{t_{r + 1}}{ = ^4}{C_r}.{(1)^{4 - r}}.{( - {x^4})^r}
Substituting in equation (2).
x× 4Cr.(1)4r.(x4)r\Rightarrow x \times {{\text{ }}^4}{C_r}.{(1)^{4 - r}}.{( - {x^4})^r}
4Cr.(1)4r.(x4)r×x1{ \Rightarrow ^4}{C_r}.{(1)^{4 - r}}.{( - {x^4})^r} \times {x^1}
We need to put the rr value by guessing, so that we need to get the term x13{x^{13}} .
If we put r=3r = 3 we get the term x13{x^{13}} .
4C3.(1)43.(x4)3×x1{ \Rightarrow ^4}{C_3}.{(1)^{4 - 3}}.{( - {x^4})^3} \times {x^1}
4C3.(1)43. x12.x1\Rightarrow { - ^4}{C_3}.{(1)^{4 - 3}}.{\text{ }}{x^{12}}.{x^1}
4C3. x13\Rightarrow { - ^4}{C_3}.{\text{ }}{x^{13}} ---- (3)
Now, (4C3)=4!3!(43)! \Rightarrow {(^4}{C_3}) = \dfrac{{4!}}{{3!(4 - 3)!}}
(4C3)=4×3×2×13×2×1(1)!\Rightarrow {(^4}{C_3}) = \dfrac{{4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1(1)!}}
(4C3)=4\Rightarrow {(^4}{C_3}) = 4
Now substituting in equation (3).
4. x13\Rightarrow - 4.{\text{ }}{x^{13}}
Hence the coefficient of x13{x^{13}} is -4.
So, the correct answer is “-4”.

Note : In the expansion (a+b)n{(a + b)^n} to find any coefficient of any term we have a formula that tr+1=nCr.anr.br{t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r} . In the above problem we can also find a particular term position in the expansion. That is tr+1=t4{t_{r + 1}} = {t_4} because r=3r = 3 . That is 4.x13 - 4.{x^{13}} is fourth term in the expansion of (1x)5.x.(1+x+x2+x3)4{(1 - x)^5}.x.{(1 + x + {x^2} + {x^3})^4} . Follow the same procedure as above for this kind of problem.