Solveeit Logo

Question

Mathematics Question on Binomial theorem

Find the coefficient of y3x8\frac{y^3}{x^8} in (x+y)5(x+y)^{-5} ?

Answer

To find the coefficient of y3x8in(x+y)5\frac{y^3}{x^8}\,in\,(x+y)^{-5}, we can use the binomial theorem. According to the binomial theorem, the expansion of (x+y)n(x+y)^n is given by:
(x+y)n(x+y)^n = C(n,0)×xn×y0+C(n,1)×x(n1)×y1+C(n,2)×x(n2)×y2+........+C(n,n1)×x1×y(n1)+C(n,n)×x0×ynC(n,0)\times x^n\times y^0+C(n,1)\times x^(n-1)\times y^1+C(n,2)\times x^{(n-2)}\times y^2+........+C(n,n-1)\times x^1\times y^{(n-1)}+C(n,n)\times x^0\times y^n
Where C(n, k) represents the binomial coefficient, given by C(n,k)=n!(k!×(nk)! )C(n,k)=\frac{n!}{(k!\times(n-k)!~)}
In this case, we have (x+y)5(x+y)^{-5}.
Now, let's focus on the term involving y^3/x^8, which corresponds to the term with k = 3 and n - k = 8:
C(5,3)×x4×y3C(-5,3)\times x^{-4}\times y^3
The binomial coefficient C(-5, 3) can be calculated as:
C(5,3)=(5)!(3!×(53)!)=(5)!3!×(8)!C(-5,3)=\frac{(-5)!}{(3!\times(-5-3)!)}=\frac{(-5)!}{3!\times(-8)!}
Since factorial values of negative numbers are not defined, C(-5, 3) is not defined. Therefore, the coefficient of y3x8in(x+y)5\frac{y^3}{x^8}\,in\,(x+y)^{-5} is zero.