Solveeit Logo

Question

Question: Find the co-ordinate of a point on the line $\vec r = (\hat i - \hat j) + \lambda (2\hat i - 3\hat j...

Find the co-ordinate of a point on the line r=(i^j^)+λ(2i^3j^+k^)\vec r = (\hat i - \hat j) + \lambda (2\hat i - 3\hat j + \hat k) at a distance 4144\sqrt{14} from the point (1, –1, 0).

A

(9, -13, 4)

B

(-7, 11, -4)

C

(1, -1, 0)

D

(2, -3, 1)

Answer

The co-ordinates of the points are (9,13,4)(9, -13, 4) and (7,11,4)(-7, 11, -4).

Explanation

Solution

The equation of the line is given by r=(1i^1j^+0k^)+λ(2i^3j^+1k^)\vec r = (1\hat i - 1\hat j + 0\hat k) + \lambda (2\hat i - 3\hat j + 1\hat k). A general point QQ on this line has coordinates (1+2λ,13λ,λ)(1 + 2\lambda, -1 - 3\lambda, \lambda). The given point is P=(1,1,0)P = (1, -1, 0). The square of the distance PQ2PQ^2 is: PQ2=((1+2λ)1)2+((13λ)(1))2+(λ0)2PQ^2 = ((1 + 2\lambda) - 1)^2 + ((-1 - 3\lambda) - (-1))^2 + (\lambda - 0)^2 PQ2=(2λ)2+(3λ)2+(λ)2=4λ2+9λ2+λ2=14λ2PQ^2 = (2\lambda)^2 + (-3\lambda)^2 + (\lambda)^2 = 4\lambda^2 + 9\lambda^2 + \lambda^2 = 14\lambda^2. We are given that the distance PQ=414PQ = 4\sqrt{14}, so PQ2=(414)2=16×14=224PQ^2 = (4\sqrt{14})^2 = 16 \times 14 = 224. Equating the two expressions for PQ2PQ^2: 14λ2=22414\lambda^2 = 224 λ2=22414=16\lambda^2 = \frac{224}{14} = 16 λ=±4\lambda = \pm 4.

For λ=4\lambda = 4: x=1+2(4)=9x = 1 + 2(4) = 9 y=13(4)=13y = -1 - 3(4) = -13 z=4z = 4 The point is (9,13,4)(9, -13, 4).

For λ=4\lambda = -4: x=1+2(4)=7x = 1 + 2(-4) = -7 y=13(4)=11y = -1 - 3(-4) = 11 z=4z = -4 The point is (7,11,4)(-7, 11, -4).