Solveeit Logo

Question

Question: Find the chord of contact of the tangents to the parabola \({{y}^{2}}=12x\) drawn through the point ...

Find the chord of contact of the tangents to the parabola y2=12x{{y}^{2}}=12x drawn through the point (1,2)\left( -1,2 \right).

Explanation

Solution

Compare y2=12x{{y}^{2}}=12x with y2=4ax{{y}^{2}}=4ax and find the value of a. Write the equation of tangent of parabola as y=mx+amy=mx+\dfrac{a}{m}, where mm is the slope of the tangent line. Substitute the given point (1,2)\left( -1,2 \right) in the equation of tangent and find the values of mm. Substitute the values of mmin the equation of the tangent to obtain the tangents of the given parabola. Finally, solve the equation of each tangent with the parabola to obtain the points of contact.

Complete step-by-step solution:
The figure shown below shows the situation graphically.

Here, we have to find the chord of contact of the tangents to the parabola y2=12x{{y}^{2}}=12x drawn through the point (1,2)\left( -1,2 \right). So, we have to determine the coordinates at which the tangents touch the parabola. Therefore, let us find the equation of tangents.
Comparing y2=12x{{y}^{2}}=12x with the general equation of parabola y2=4ax{{y}^{2}}=4ax, we get.
4a=12 a=3 \begin{aligned} & 4a=12 \\\ & \Rightarrow a=3 \\\ \end{aligned}
Now, we know that the equation of a parabola is given as y=mx+amy=mx+\dfrac{a}{m}, where mm is the slope. Therefore, substituting the value of a in the equation of tangent, we get,
y=mx+3m\Rightarrow y=mx+\dfrac{3}{m}
Since, it is given that the above equation is drawn through the point (1,2)\left( -1,2 \right). So, substituting this point in the above equation, we get,
2=m+3m 2m=m2+3 m2+2m3=0 \begin{aligned} & \Rightarrow 2=-m+\dfrac{3}{m} \\\ & \Rightarrow 2m=-{{m}^{2}}+3 \\\ & \Rightarrow {{m}^{2}}+2m-3=0 \\\ \end{aligned}
Applying the middle term split method, we get,
m2+3mm3=0 (m+3)(m1)=0 m=1 or 3 \begin{aligned} & \Rightarrow {{m}^{2}}+3m-m-3=0 \\\ & \Rightarrow \left( m+3 \right)\left( m-1 \right)=0 \\\ & \Rightarrow m=1\text{ }or\text{ }-3 \\\ \end{aligned}
So, substituting the values of mm in the equation of tangent, we get,
y=x+3(i) y=3x1(ii) \begin{aligned} & y=x+3\ldots \ldots \ldots \left( i \right) \\\ & y=-3x-1\ldots \ldots \ldots \left( ii \right) \\\ \end{aligned}
Now, to find the chord of contact we have to solve the equations of tangent with the equation of parabola one by one. So, we have,
1. Consider y=x+3y=x+3 and y2=12x{{y}^{2}}=12x.
Substituting the value of yy from equation of tangent in the equation of parabola, we get,
(x+3)2=12x x2+9+6x=12x x2+96x=0 (x3)2=0 x=3 \begin{aligned} & \Rightarrow {{\left( x+3 \right)}^{2}}=12x \\\ & \Rightarrow {{x}^{2}}+9+6x=12x \\\ & \Rightarrow {{x}^{2}}+9-6x=0 \\\ & \Rightarrow {{\left( x-3 \right)}^{2}}=0 \\\ & \Rightarrow x=3 \\\ \end{aligned}
Substituting x=3x=3 in y=x+3y=x+3, we get,
y=3+3=6\Rightarrow y=3+3=6
Therefore, the point of contact is (3,6)\left( 3,6 \right).
2. Consider y=3x1y=-3x-1 and y2=12x{{y}^{2}}=12x.
Substituting the value of yy from equation of tangent in the equation of parabola, we get,
(3x1)2=12x 9x2+1+6x=12x 9x2+16x=0 (3x1)2=0 x=13 \begin{aligned} & \Rightarrow {{\left( -3x-1 \right)}^{2}}=12x \\\ & \Rightarrow 9{{x}^{2}}+1+6x=12x \\\ & \Rightarrow 9{{x}^{2}}+1-6x=0 \\\ & \Rightarrow {{\left( 3x-1 \right)}^{2}}=0 \\\ & \Rightarrow x=\dfrac{1}{3} \\\ \end{aligned}
Substituting x=13x=\dfrac{1}{3} in y=3x1y=-3x-1 , we get,
y=3×131=2\Rightarrow y=-3\times \dfrac{1}{3}-1=-2
Therefore, the point of contact is (13,2)\left( \dfrac{1}{3},-2 \right).
Hence, the point of chord of contact of the tangents to the parabola are (3,6)\left( 3,6 \right) and (13,2)\left( \dfrac{1}{3},-2 \right).

Note: One may note that if we have to find the equation of chord of contact then we will assume M(3,6)M\left( 3,6 \right) and N(13,2)N\left( \dfrac{1}{3},-2 \right) as (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) in the above figure. Then we will apply the formula for general equation of line given as (yy1)=(y1y2x1x2)(xx1)\left( y-{{y}_{1}} \right)=\left( \dfrac{{{y}_{1}}-{{y}_{2}}}{{{x}_{1}}-{{x}_{2}}} \right)\left( x-{{x}_{1}} \right) and substitute the assumed values. To solve the above question, you must remember the general equation of tangent of parabola.